TOWARDS A CLASSIFICATION FOR QUASIPERIODICALLY FORCED CIRCLE HOMEOMORPHISMS

Poincaré's classification of the dynamics of homeomorphisms of the circle is one of the earliest, but still one of the most elegant, classification results in dynamical systems. Here we generalize this to quasiperiodically forced circle homeomorphisms homotopic to the identity, which have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2006-06, Vol.73 (3), p.727-744
Hauptverfasser: JÄGER, TOBIAS H., STARK, JAROSLAV
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 744
container_issue 3
container_start_page 727
container_title Journal of the London Mathematical Society
container_volume 73
creator JÄGER, TOBIAS H.
STARK, JAROSLAV
description Poincaré's classification of the dynamics of homeomorphisms of the circle is one of the earliest, but still one of the most elegant, classification results in dynamical systems. Here we generalize this to quasiperiodically forced circle homeomorphisms homotopic to the identity, which have been the subject of considerable interest in recent years. Herman already showed two decades ago that a unique rotation number exists for all orbits in the quasiperiodically forced case. However, unlike the unforced case, no a priori bounds exist for the deviations from the average rotation. This plays an important role in the attempted classification, and in fact we define a system as $\rho$-bounded if such deviations are bounded and as $\rho$-unbounded otherwise. For the $\rho$-bounded case we prove a close analogue of Poincaré's result: if the rotation number is rationally related to the rotation rate on the base then there exists an invariant strip (the appropriate analogue for fixed or periodic points in this context), otherwise the system is semi-conjugate to an irrational translation of the torus. In the $\rho$-unbounded case, where neither of these two alternatives can occur, we show that the dynamics are always topologically transitive.
doi_str_mv 10.1112/S0024610706022782
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0024610706022782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0024610706022782</cupid><sourcerecordid>10_1112_S0024610706022782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4667-43c4c7783ef778cad5af7a12b34ba8a057379f33c0e170118ecadb4e443213e43</originalsourceid><addsrcrecordid>eNqFkM1Og0AUhSdGE2v1AdzxAuj8wdAlpVRQcFqmjdXNZKCDobbWDBrt2zukjRsT3dyb3HO-m5MDwCWCVwghfC0gxNRHkEEfYswCfAR6iPoDlzEPHoNeJ7udfgrO2nYFISII4h64m_GHsBgJJ3SiLBQiHadROEv5vTPmhTOdhyKdxEXKR_acZY_dNYpHTpQWURY7Cc9jnvNikqQiF-fgpFbrVl8cdh_Mx_EsStyM33S4W1HfZy4lFa0YC4iu7azU0lM1UwiXhJYqUNBjhA1qQiqoEYMIBdp6SqopJRgRTUkfoP3fymzb1uhavplmo8xOIii7NuSvNizD9sxns9a7_wF5m-UCMsws6e7Jpn3XXz-kMi_St0k9mSyeZDQthosJHcqh9ZNDOrUpTbN81nK1_TCvtpE_8n0DFBZ45Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>TOWARDS A CLASSIFICATION FOR QUASIPERIODICALLY FORCED CIRCLE HOMEOMORPHISMS</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>JÄGER, TOBIAS H. ; STARK, JAROSLAV</creator><creatorcontrib>JÄGER, TOBIAS H. ; STARK, JAROSLAV</creatorcontrib><description>Poincaré's classification of the dynamics of homeomorphisms of the circle is one of the earliest, but still one of the most elegant, classification results in dynamical systems. Here we generalize this to quasiperiodically forced circle homeomorphisms homotopic to the identity, which have been the subject of considerable interest in recent years. Herman already showed two decades ago that a unique rotation number exists for all orbits in the quasiperiodically forced case. However, unlike the unforced case, no a priori bounds exist for the deviations from the average rotation. This plays an important role in the attempted classification, and in fact we define a system as $\rho$-bounded if such deviations are bounded and as $\rho$-unbounded otherwise. For the $\rho$-bounded case we prove a close analogue of Poincaré's result: if the rotation number is rationally related to the rotation rate on the base then there exists an invariant strip (the appropriate analogue for fixed or periodic points in this context), otherwise the system is semi-conjugate to an irrational translation of the torus. In the $\rho$-unbounded case, where neither of these two alternatives can occur, we show that the dynamics are always topologically transitive.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/S0024610706022782</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Notes and Papers</subject><ispartof>Journal of the London Mathematical Society, 2006-06, Vol.73 (3), p.727-744</ispartof><rights>The London Mathematical Society 2006</rights><rights>2006 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4667-43c4c7783ef778cad5af7a12b34ba8a057379f33c0e170118ecadb4e443213e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0024610706022782$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0024610706022782$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>JÄGER, TOBIAS H.</creatorcontrib><creatorcontrib>STARK, JAROSLAV</creatorcontrib><title>TOWARDS A CLASSIFICATION FOR QUASIPERIODICALLY FORCED CIRCLE HOMEOMORPHISMS</title><title>Journal of the London Mathematical Society</title><addtitle>J. Lond. Math. Soc</addtitle><description>Poincaré's classification of the dynamics of homeomorphisms of the circle is one of the earliest, but still one of the most elegant, classification results in dynamical systems. Here we generalize this to quasiperiodically forced circle homeomorphisms homotopic to the identity, which have been the subject of considerable interest in recent years. Herman already showed two decades ago that a unique rotation number exists for all orbits in the quasiperiodically forced case. However, unlike the unforced case, no a priori bounds exist for the deviations from the average rotation. This plays an important role in the attempted classification, and in fact we define a system as $\rho$-bounded if such deviations are bounded and as $\rho$-unbounded otherwise. For the $\rho$-bounded case we prove a close analogue of Poincaré's result: if the rotation number is rationally related to the rotation rate on the base then there exists an invariant strip (the appropriate analogue for fixed or periodic points in this context), otherwise the system is semi-conjugate to an irrational translation of the torus. In the $\rho$-unbounded case, where neither of these two alternatives can occur, we show that the dynamics are always topologically transitive.</description><subject>Notes and Papers</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Og0AUhSdGE2v1AdzxAuj8wdAlpVRQcFqmjdXNZKCDobbWDBrt2zukjRsT3dyb3HO-m5MDwCWCVwghfC0gxNRHkEEfYswCfAR6iPoDlzEPHoNeJ7udfgrO2nYFISII4h64m_GHsBgJJ3SiLBQiHadROEv5vTPmhTOdhyKdxEXKR_acZY_dNYpHTpQWURY7Cc9jnvNikqQiF-fgpFbrVl8cdh_Mx_EsStyM33S4W1HfZy4lFa0YC4iu7azU0lM1UwiXhJYqUNBjhA1qQiqoEYMIBdp6SqopJRgRTUkfoP3fymzb1uhavplmo8xOIii7NuSvNizD9sxns9a7_wF5m-UCMsws6e7Jpn3XXz-kMi_St0k9mSyeZDQthosJHcqh9ZNDOrUpTbN81nK1_TCvtpE_8n0DFBZ45Q</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>JÄGER, TOBIAS H.</creator><creator>STARK, JAROSLAV</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200606</creationdate><title>TOWARDS A CLASSIFICATION FOR QUASIPERIODICALLY FORCED CIRCLE HOMEOMORPHISMS</title><author>JÄGER, TOBIAS H. ; STARK, JAROSLAV</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4667-43c4c7783ef778cad5af7a12b34ba8a057379f33c0e170118ecadb4e443213e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Notes and Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JÄGER, TOBIAS H.</creatorcontrib><creatorcontrib>STARK, JAROSLAV</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JÄGER, TOBIAS H.</au><au>STARK, JAROSLAV</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TOWARDS A CLASSIFICATION FOR QUASIPERIODICALLY FORCED CIRCLE HOMEOMORPHISMS</atitle><jtitle>Journal of the London Mathematical Society</jtitle><addtitle>J. Lond. Math. Soc</addtitle><date>2006-06</date><risdate>2006</risdate><volume>73</volume><issue>3</issue><spage>727</spage><epage>744</epage><pages>727-744</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>Poincaré's classification of the dynamics of homeomorphisms of the circle is one of the earliest, but still one of the most elegant, classification results in dynamical systems. Here we generalize this to quasiperiodically forced circle homeomorphisms homotopic to the identity, which have been the subject of considerable interest in recent years. Herman already showed two decades ago that a unique rotation number exists for all orbits in the quasiperiodically forced case. However, unlike the unforced case, no a priori bounds exist for the deviations from the average rotation. This plays an important role in the attempted classification, and in fact we define a system as $\rho$-bounded if such deviations are bounded and as $\rho$-unbounded otherwise. For the $\rho$-bounded case we prove a close analogue of Poincaré's result: if the rotation number is rationally related to the rotation rate on the base then there exists an invariant strip (the appropriate analogue for fixed or periodic points in this context), otherwise the system is semi-conjugate to an irrational translation of the torus. In the $\rho$-unbounded case, where neither of these two alternatives can occur, we show that the dynamics are always topologically transitive.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1112/S0024610706022782</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2006-06, Vol.73 (3), p.727-744
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_S0024610706022782
source Access via Wiley Online Library; Alma/SFX Local Collection
subjects Notes and Papers
title TOWARDS A CLASSIFICATION FOR QUASIPERIODICALLY FORCED CIRCLE HOMEOMORPHISMS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TOWARDS%20A%20CLASSIFICATION%20FOR%20QUASIPERIODICALLY%20FORCED%20CIRCLE%20HOMEOMORPHISMS&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=J%C3%84GER,%20TOBIAS%20H.&rft.date=2006-06&rft.volume=73&rft.issue=3&rft.spage=727&rft.epage=744&rft.pages=727-744&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/S0024610706022782&rft_dat=%3Ccambridge_cross%3E10_1112_S0024610706022782%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0024610706022782&rfr_iscdi=true