HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA

When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2003-08, Vol.68 (1), p.255-272
Hauptverfasser: LINDSAY, J. MARTIN, WILLS, STEPHEN J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272
container_issue 1
container_start_page 255
container_title Journal of the London Mathematical Society
container_volume 68
creator LINDSAY, J. MARTIN
WILLS, STEPHEN J.
description When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to generate a weakly multiplicative cocycle. These are derived from a product formula for iterated quantum stochastic integrals. Under two alternative assumptions, one of which covers all previously considered cases, the first identity in the sequence is shown to imply the rest.
doi_str_mv 10.1112/S0024610703004174
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0024610703004174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0024610703004174</cupid><sourcerecordid>10_1112_S0024610703004174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-8e48a8b05d2188a231bdab6fce3b74f4fb32c2d6e8c1fda68ed15db85588e66e3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFY_gLccel3d2f8eY0iTSmokUag9uGySjaS2VhJF--1NafEiKHOYw3u_4b1B6BzIBQDQy5wQyiUQRRghHBQ_QAPg8gorJcghGmxlvNWP0UnXLQgBBoQOEI7TaT_ZXTwJvHGYJGHmBWnwGCRh7qW3nu-NgqcR9pMovM78U3RU22XnzvZ7iB7G4X0Q4ySNJoGf4JIpJrB2XFtdEFFR0NpSBkVlC1mXjhWK17wuGC1pJZ0uoa6s1K4CURVaCK2dlI4NEezulu2661pXm7e2Wdl2Y4CYbV_zq2_PqB3z2Szd5n_A3CTTnFAhehLvyKZ7d18_pG1fjFRMCRPP5obN8ojmPDPz3s_26eyqaJvq2ZnF-qN97T_yR75vQaBwpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>LINDSAY, J. MARTIN ; WILLS, STEPHEN J.</creator><creatorcontrib>LINDSAY, J. MARTIN ; WILLS, STEPHEN J.</creatorcontrib><description>When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to generate a weakly multiplicative cocycle. These are derived from a product formula for iterated quantum stochastic integrals. Under two alternative assumptions, one of which covers all previously considered cases, the first identity in the sequence is shown to imply the rest.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/S0024610703004174</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Notes and Papers</subject><ispartof>Journal of the London Mathematical Society, 2003-08, Vol.68 (1), p.255-272</ispartof><rights>The London Mathematical Society 2003</rights><rights>2003 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-8e48a8b05d2188a231bdab6fce3b74f4fb32c2d6e8c1fda68ed15db85588e66e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0024610703004174$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0024610703004174$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>LINDSAY, J. MARTIN</creatorcontrib><creatorcontrib>WILLS, STEPHEN J.</creatorcontrib><title>HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA</title><title>Journal of the London Mathematical Society</title><addtitle>J. Lond. Math. Soc</addtitle><description>When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to generate a weakly multiplicative cocycle. These are derived from a product formula for iterated quantum stochastic integrals. Under two alternative assumptions, one of which covers all previously considered cases, the first identity in the sequence is shown to imply the rest.</description><subject>Notes and Papers</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFY_gLccel3d2f8eY0iTSmokUag9uGySjaS2VhJF--1NafEiKHOYw3u_4b1B6BzIBQDQy5wQyiUQRRghHBQ_QAPg8gorJcghGmxlvNWP0UnXLQgBBoQOEI7TaT_ZXTwJvHGYJGHmBWnwGCRh7qW3nu-NgqcR9pMovM78U3RU22XnzvZ7iB7G4X0Q4ySNJoGf4JIpJrB2XFtdEFFR0NpSBkVlC1mXjhWK17wuGC1pJZ0uoa6s1K4CURVaCK2dlI4NEezulu2661pXm7e2Wdl2Y4CYbV_zq2_PqB3z2Szd5n_A3CTTnFAhehLvyKZ7d18_pG1fjFRMCRPP5obN8ojmPDPz3s_26eyqaJvq2ZnF-qN97T_yR75vQaBwpg</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>LINDSAY, J. MARTIN</creator><creator>WILLS, STEPHEN J.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200308</creationdate><title>HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA</title><author>LINDSAY, J. MARTIN ; WILLS, STEPHEN J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-8e48a8b05d2188a231bdab6fce3b74f4fb32c2d6e8c1fda68ed15db85588e66e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Notes and Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LINDSAY, J. MARTIN</creatorcontrib><creatorcontrib>WILLS, STEPHEN J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LINDSAY, J. MARTIN</au><au>WILLS, STEPHEN J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA</atitle><jtitle>Journal of the London Mathematical Society</jtitle><addtitle>J. Lond. Math. Soc</addtitle><date>2003-08</date><risdate>2003</risdate><volume>68</volume><issue>1</issue><spage>255</spage><epage>272</epage><pages>255-272</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to generate a weakly multiplicative cocycle. These are derived from a product formula for iterated quantum stochastic integrals. Under two alternative assumptions, one of which covers all previously considered cases, the first identity in the sequence is shown to imply the rest.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1112/S0024610703004174</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6107
ispartof Journal of the London Mathematical Society, 2003-08, Vol.68 (1), p.255-272
issn 0024-6107
1469-7750
language eng
recordid cdi_crossref_primary_10_1112_S0024610703004174
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Notes and Papers
title HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HOMOMORPHIC%20FELLER%20COCYCLES%20ON%20A%20$C%5E$-ALGEBRA&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=LINDSAY,%20J.%20MARTIN&rft.date=2003-08&rft.volume=68&rft.issue=1&rft.spage=255&rft.epage=272&rft.pages=255-272&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/S0024610703004174&rft_dat=%3Ccambridge_cross%3E10_1112_S0024610703004174%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0024610703004174&rfr_iscdi=true