HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA
When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to g...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2003-08, Vol.68 (1), p.255-272 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 272 |
---|---|
container_issue | 1 |
container_start_page | 255 |
container_title | Journal of the London Mathematical Society |
container_volume | 68 |
creator | LINDSAY, J. MARTIN WILLS, STEPHEN J. |
description | When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to generate a weakly multiplicative cocycle. These are derived from a product formula for iterated quantum stochastic integrals. Under two alternative assumptions, one of which covers all previously considered cases, the first identity in the sequence is shown to imply the rest. |
doi_str_mv | 10.1112/S0024610703004174 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0024610703004174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0024610703004174</cupid><sourcerecordid>10_1112_S0024610703004174</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3735-8e48a8b05d2188a231bdab6fce3b74f4fb32c2d6e8c1fda68ed15db85588e66e3</originalsourceid><addsrcrecordid>eNqFkE9Lw0AQxRdRsFY_gLccel3d2f8eY0iTSmokUag9uGySjaS2VhJF--1NafEiKHOYw3u_4b1B6BzIBQDQy5wQyiUQRRghHBQ_QAPg8gorJcghGmxlvNWP0UnXLQgBBoQOEI7TaT_ZXTwJvHGYJGHmBWnwGCRh7qW3nu-NgqcR9pMovM78U3RU22XnzvZ7iB7G4X0Q4ySNJoGf4JIpJrB2XFtdEFFR0NpSBkVlC1mXjhWK17wuGC1pJZ0uoa6s1K4CURVaCK2dlI4NEezulu2661pXm7e2Wdl2Y4CYbV_zq2_PqB3z2Szd5n_A3CTTnFAhehLvyKZ7d18_pG1fjFRMCRPP5obN8ojmPDPz3s_26eyqaJvq2ZnF-qN97T_yR75vQaBwpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>LINDSAY, J. MARTIN ; WILLS, STEPHEN J.</creator><creatorcontrib>LINDSAY, J. MARTIN ; WILLS, STEPHEN J.</creatorcontrib><description>When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to generate a weakly multiplicative cocycle. These are derived from a product formula for iterated quantum stochastic integrals. Under two alternative assumptions, one of which covers all previously considered cases, the first identity in the sequence is shown to imply the rest.</description><identifier>ISSN: 0024-6107</identifier><identifier>EISSN: 1469-7750</identifier><identifier>DOI: 10.1112/S0024610703004174</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Notes and Papers</subject><ispartof>Journal of the London Mathematical Society, 2003-08, Vol.68 (1), p.255-272</ispartof><rights>The London Mathematical Society 2003</rights><rights>2003 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3735-8e48a8b05d2188a231bdab6fce3b74f4fb32c2d6e8c1fda68ed15db85588e66e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0024610703004174$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0024610703004174$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>LINDSAY, J. MARTIN</creatorcontrib><creatorcontrib>WILLS, STEPHEN J.</creatorcontrib><title>HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA</title><title>Journal of the London Mathematical Society</title><addtitle>J. Lond. Math. Soc</addtitle><description>When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to generate a weakly multiplicative cocycle. These are derived from a product formula for iterated quantum stochastic integrals. Under two alternative assumptions, one of which covers all previously considered cases, the first identity in the sequence is shown to imply the rest.</description><subject>Notes and Papers</subject><issn>0024-6107</issn><issn>1469-7750</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE9Lw0AQxRdRsFY_gLccel3d2f8eY0iTSmokUag9uGySjaS2VhJF--1NafEiKHOYw3u_4b1B6BzIBQDQy5wQyiUQRRghHBQ_QAPg8gorJcghGmxlvNWP0UnXLQgBBoQOEI7TaT_ZXTwJvHGYJGHmBWnwGCRh7qW3nu-NgqcR9pMovM78U3RU22XnzvZ7iB7G4X0Q4ySNJoGf4JIpJrB2XFtdEFFR0NpSBkVlC1mXjhWK17wuGC1pJZ0uoa6s1K4CURVaCK2dlI4NEezulu2661pXm7e2Wdl2Y4CYbV_zq2_PqB3z2Szd5n_A3CTTnFAhehLvyKZ7d18_pG1fjFRMCRPP5obN8ojmPDPz3s_26eyqaJvq2ZnF-qN97T_yR75vQaBwpg</recordid><startdate>200308</startdate><enddate>200308</enddate><creator>LINDSAY, J. MARTIN</creator><creator>WILLS, STEPHEN J.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200308</creationdate><title>HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA</title><author>LINDSAY, J. MARTIN ; WILLS, STEPHEN J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3735-8e48a8b05d2188a231bdab6fce3b74f4fb32c2d6e8c1fda68ed15db85588e66e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Notes and Papers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LINDSAY, J. MARTIN</creatorcontrib><creatorcontrib>WILLS, STEPHEN J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Journal of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LINDSAY, J. MARTIN</au><au>WILLS, STEPHEN J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA</atitle><jtitle>Journal of the London Mathematical Society</jtitle><addtitle>J. Lond. Math. Soc</addtitle><date>2003-08</date><risdate>2003</risdate><volume>68</volume><issue>1</issue><spage>255</spage><epage>272</epage><pages>255-272</pages><issn>0024-6107</issn><eissn>1469-7750</eissn><abstract>When a Fock-adapted Feller cocycle on a $C^*$-algebra is regular, completely positive and contractive, it possesses a stochastic generator that is necessarily completely bounded. Necessary and sufficient conditions are given, in the form of a sequence of identities, for a completely bounded map to generate a weakly multiplicative cocycle. These are derived from a product formula for iterated quantum stochastic integrals. Under two alternative assumptions, one of which covers all previously considered cases, the first identity in the sequence is shown to imply the rest.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1112/S0024610703004174</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6107 |
ispartof | Journal of the London Mathematical Society, 2003-08, Vol.68 (1), p.255-272 |
issn | 0024-6107 1469-7750 |
language | eng |
recordid | cdi_crossref_primary_10_1112_S0024610703004174 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Notes and Papers |
title | HOMOMORPHIC FELLER COCYCLES ON A $C^$-ALGEBRA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HOMOMORPHIC%20FELLER%20COCYCLES%20ON%20A%20$C%5E$-ALGEBRA&rft.jtitle=Journal%20of%20the%20London%20Mathematical%20Society&rft.au=LINDSAY,%20J.%20MARTIN&rft.date=2003-08&rft.volume=68&rft.issue=1&rft.spage=255&rft.epage=272&rft.pages=255-272&rft.issn=0024-6107&rft.eissn=1469-7750&rft_id=info:doi/10.1112/S0024610703004174&rft_dat=%3Ccambridge_cross%3E10_1112_S0024610703004174%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0024610703004174&rfr_iscdi=true |