A REMARK ON KÄHLER METRICS OF CONSTANT SCALAR CURVATURE ON RULED COMPLEX SURFACES

In this paper we point out how some recent developments in the theory of constant scalar curvature Kähler metrics can be used to clarify the existence issue for such metrics in the special case of (geometrically) ruled complex surfaces. 2000 Mathematics Subject Classification 53C55, 58E11.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2006-06, Vol.38 (3), p.494-500
Hauptverfasser: APOSTOLOV, V., TØNNESEN-FRIEDMAN, C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 500
container_issue 3
container_start_page 494
container_title The Bulletin of the London Mathematical Society
container_volume 38
creator APOSTOLOV, V.
TØNNESEN-FRIEDMAN, C.
description In this paper we point out how some recent developments in the theory of constant scalar curvature Kähler metrics can be used to clarify the existence issue for such metrics in the special case of (geometrically) ruled complex surfaces. 2000 Mathematics Subject Classification 53C55, 58E11.
doi_str_mv 10.1112/S0024609306018480
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0024609306018480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0024609306018480</cupid><sourcerecordid>10_1112_S0024609306018480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3754-d48372f75f3fdfff8bd881b600edcb472db27caf7a9080bb389a6558b95359243</originalsourceid><addsrcrecordid>eNqFkM1Og0AUhSdGE2v1AdzNC6B3mIEZlhTpj4ViBjCNmwl_Y6itNaDR7n0zX0xIGzcmurqLc75z7z0IXRK4IoSY1zGAyWxwKNhABBNwhAaE2Y5hEhOO0aCXjV4_RWdtuwIgFDgZIOli6YeunONogedfn9PAlzj0EznzYhyNsRct4sRdJDj23MCV2EvlvZuk0u_9Mg38m84S3gX-EsepHLueH5-jE52t2-riMIcoHfuJNzWCaDLrUoyCcosZJROUm5pbmupSay3yUgiS2wBVWeSMm2Vu8iLTPHNAQJ5T4WS2ZYncsajlmIwOEdnnFs22bZtKq5em3mTNThFQfSnqVykdw_fMe72udv8DahSEMTCn32bsybp9rT5-yKx5UjbvHlLT5YMKb0fWaDkZK9L56eG6bJM3dflYqdX2rXnuGvnjvm8R4Xs_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A REMARK ON KÄHLER METRICS OF CONSTANT SCALAR CURVATURE ON RULED COMPLEX SURFACES</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>APOSTOLOV, V. ; TØNNESEN-FRIEDMAN, C.</creator><creatorcontrib>APOSTOLOV, V. ; TØNNESEN-FRIEDMAN, C.</creatorcontrib><description>In this paper we point out how some recent developments in the theory of constant scalar curvature Kähler metrics can be used to clarify the existence issue for such metrics in the special case of (geometrically) ruled complex surfaces. 2000 Mathematics Subject Classification 53C55, 58E11.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/S0024609306018480</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2006-06, Vol.38 (3), p.494-500</ispartof><rights>The London Mathematical Society 2006</rights><rights>2006 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3754-d48372f75f3fdfff8bd881b600edcb472db27caf7a9080bb389a6558b95359243</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0024609306018480$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0024609306018480$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>APOSTOLOV, V.</creatorcontrib><creatorcontrib>TØNNESEN-FRIEDMAN, C.</creatorcontrib><title>A REMARK ON KÄHLER METRICS OF CONSTANT SCALAR CURVATURE ON RULED COMPLEX SURFACES</title><title>The Bulletin of the London Mathematical Society</title><addtitle>Bull. Lond. Math. Soc</addtitle><description>In this paper we point out how some recent developments in the theory of constant scalar curvature Kähler metrics can be used to clarify the existence issue for such metrics in the special case of (geometrically) ruled complex surfaces. 2000 Mathematics Subject Classification 53C55, 58E11.</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Og0AUhSdGE2v1AdzNC6B3mIEZlhTpj4ViBjCNmwl_Y6itNaDR7n0zX0xIGzcmurqLc75z7z0IXRK4IoSY1zGAyWxwKNhABBNwhAaE2Y5hEhOO0aCXjV4_RWdtuwIgFDgZIOli6YeunONogedfn9PAlzj0EznzYhyNsRct4sRdJDj23MCV2EvlvZuk0u_9Mg38m84S3gX-EsepHLueH5-jE52t2-riMIcoHfuJNzWCaDLrUoyCcosZJROUm5pbmupSay3yUgiS2wBVWeSMm2Vu8iLTPHNAQJ5T4WS2ZYncsajlmIwOEdnnFs22bZtKq5em3mTNThFQfSnqVykdw_fMe72udv8DahSEMTCn32bsybp9rT5-yKx5UjbvHlLT5YMKb0fWaDkZK9L56eG6bJM3dflYqdX2rXnuGvnjvm8R4Xs_</recordid><startdate>200606</startdate><enddate>200606</enddate><creator>APOSTOLOV, V.</creator><creator>TØNNESEN-FRIEDMAN, C.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200606</creationdate><title>A REMARK ON KÄHLER METRICS OF CONSTANT SCALAR CURVATURE ON RULED COMPLEX SURFACES</title><author>APOSTOLOV, V. ; TØNNESEN-FRIEDMAN, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3754-d48372f75f3fdfff8bd881b600edcb472db27caf7a9080bb389a6558b95359243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>APOSTOLOV, V.</creatorcontrib><creatorcontrib>TØNNESEN-FRIEDMAN, C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>APOSTOLOV, V.</au><au>TØNNESEN-FRIEDMAN, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A REMARK ON KÄHLER METRICS OF CONSTANT SCALAR CURVATURE ON RULED COMPLEX SURFACES</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><addtitle>Bull. Lond. Math. Soc</addtitle><date>2006-06</date><risdate>2006</risdate><volume>38</volume><issue>3</issue><spage>494</spage><epage>500</epage><pages>494-500</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>In this paper we point out how some recent developments in the theory of constant scalar curvature Kähler metrics can be used to clarify the existence issue for such metrics in the special case of (geometrically) ruled complex surfaces. 2000 Mathematics Subject Classification 53C55, 58E11.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1112/S0024609306018480</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2006-06, Vol.38 (3), p.494-500
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_S0024609306018480
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
title A REMARK ON KÄHLER METRICS OF CONSTANT SCALAR CURVATURE ON RULED COMPLEX SURFACES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A50%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20REMARK%20ON%20K%C3%84HLER%20METRICS%20OF%20CONSTANT%20SCALAR%20CURVATURE%20ON%20RULED%20COMPLEX%20SURFACES&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=APOSTOLOV,%20V.&rft.date=2006-06&rft.volume=38&rft.issue=3&rft.spage=494&rft.epage=500&rft.pages=494-500&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/S0024609306018480&rft_dat=%3Ccambridge_cross%3E10_1112_S0024609306018480%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0024609306018480&rfr_iscdi=true