INTEGRAL ESTIMATES FOR TRANSPORT DENSITIES
The integration-by-parts methods introduced in this paper improve upon the $L^p$ estimates on transport densities given in the recent paper by L. De Pascale and A. Pratelli (Calc. Var. Partial Differential Equations 14 (2002) 249–274).
Gespeichert in:
Veröffentlicht in: | The Bulletin of the London Mathematical Society 2004-05, Vol.36 (3), p.383-395 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 395 |
---|---|
container_issue | 3 |
container_start_page | 383 |
container_title | The Bulletin of the London Mathematical Society |
container_volume | 36 |
creator | DE PASCALE, L. EVANS, L. C. PRATELLI, A. |
description | The integration-by-parts methods introduced in this paper improve upon the $L^p$ estimates on transport densities given in the recent paper by L. De Pascale and A. Pratelli (Calc. Var. Partial Differential Equations 14 (2002) 249–274). |
doi_str_mv | 10.1112/S0024609303003035 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0024609303003035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0024609303003035</cupid><sourcerecordid>10_1112_S0024609303003035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4163-65fbf084ef988f4fba06734963df446f930f356868b12b9f5e0bc2b38e1038413</originalsourceid><addsrcrecordid>eNqFkNFPwjAQxhujiYj-Ab7t2WR6XbuuexwwYMlgZK3E8NKs0JohiNk0yn9vCcQXE00uuYfvfnffdwjdYrjHGAcPAiCgDGICBFyR8Ax1MGWxH-AAzlHnIPsH_RJdte0aABOIcAfdZVOZjsok91Ihs0kiU-ENi9KTZTIVs6KU3iCdikxmqbhGF7batObm1LvocZjK_tjPi1HWT3J_STEjPguttsCpsTHnllpdAYsIjRlZWUqZdRYtCRlnXONAxzY0oJeBJtxgIJxi0kX4uHfZ7Nq2MVa9NfW2avYKgzqEVb_COiY6Mp_1xuz_B1Qvnwh3jjjSP5J1-26-fsiqeVHOdhSq8dNC9QbRbL7ozxV18-Tkrtrqpl49G7XefTSv7iN_-PsGqwlvKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>INTEGRAL ESTIMATES FOR TRANSPORT DENSITIES</title><source>Wiley-Blackwell Journals</source><source>Alma/SFX Local Collection</source><creator>DE PASCALE, L. ; EVANS, L. C. ; PRATELLI, A.</creator><creatorcontrib>DE PASCALE, L. ; EVANS, L. C. ; PRATELLI, A.</creatorcontrib><description>The integration-by-parts methods introduced in this paper improve upon the $L^p$ estimates on transport densities given in the recent paper by L. De Pascale and A. Pratelli (Calc. Var. Partial Differential Equations 14 (2002) 249–274).</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/S0024609303003035</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>The Bulletin of the London Mathematical Society, 2004-05, Vol.36 (3), p.383-395</ispartof><rights>The London Mathematical Society 2004</rights><rights>2004 London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4163-65fbf084ef988f4fba06734963df446f930f356868b12b9f5e0bc2b38e1038413</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0024609303003035$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0024609303003035$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27915,27916,45565,45566</link.rule.ids></links><search><creatorcontrib>DE PASCALE, L.</creatorcontrib><creatorcontrib>EVANS, L. C.</creatorcontrib><creatorcontrib>PRATELLI, A.</creatorcontrib><title>INTEGRAL ESTIMATES FOR TRANSPORT DENSITIES</title><title>The Bulletin of the London Mathematical Society</title><addtitle>Bull. Lond. Math. Soc</addtitle><description>The integration-by-parts methods introduced in this paper improve upon the $L^p$ estimates on transport densities given in the recent paper by L. De Pascale and A. Pratelli (Calc. Var. Partial Differential Equations 14 (2002) 249–274).</description><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkNFPwjAQxhujiYj-Ab7t2WR6XbuuexwwYMlgZK3E8NKs0JohiNk0yn9vCcQXE00uuYfvfnffdwjdYrjHGAcPAiCgDGICBFyR8Ax1MGWxH-AAzlHnIPsH_RJdte0aABOIcAfdZVOZjsok91Ihs0kiU-ENi9KTZTIVs6KU3iCdikxmqbhGF7batObm1LvocZjK_tjPi1HWT3J_STEjPguttsCpsTHnllpdAYsIjRlZWUqZdRYtCRlnXONAxzY0oJeBJtxgIJxi0kX4uHfZ7Nq2MVa9NfW2avYKgzqEVb_COiY6Mp_1xuz_B1Qvnwh3jjjSP5J1-26-fsiqeVHOdhSq8dNC9QbRbL7ozxV18-Tkrtrqpl49G7XefTSv7iN_-PsGqwlvKg</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>DE PASCALE, L.</creator><creator>EVANS, L. C.</creator><creator>PRATELLI, A.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200405</creationdate><title>INTEGRAL ESTIMATES FOR TRANSPORT DENSITIES</title><author>DE PASCALE, L. ; EVANS, L. C. ; PRATELLI, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4163-65fbf084ef988f4fba06734963df446f930f356868b12b9f5e0bc2b38e1038413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DE PASCALE, L.</creatorcontrib><creatorcontrib>EVANS, L. C.</creatorcontrib><creatorcontrib>PRATELLI, A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DE PASCALE, L.</au><au>EVANS, L. C.</au><au>PRATELLI, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>INTEGRAL ESTIMATES FOR TRANSPORT DENSITIES</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><addtitle>Bull. Lond. Math. Soc</addtitle><date>2004-05</date><risdate>2004</risdate><volume>36</volume><issue>3</issue><spage>383</spage><epage>395</epage><pages>383-395</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>The integration-by-parts methods introduced in this paper improve upon the $L^p$ estimates on transport densities given in the recent paper by L. De Pascale and A. Pratelli (Calc. Var. Partial Differential Equations 14 (2002) 249–274).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1112/S0024609303003035</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-6093 |
ispartof | The Bulletin of the London Mathematical Society, 2004-05, Vol.36 (3), p.383-395 |
issn | 0024-6093 1469-2120 |
language | eng |
recordid | cdi_crossref_primary_10_1112_S0024609303003035 |
source | Wiley-Blackwell Journals; Alma/SFX Local Collection |
title | INTEGRAL ESTIMATES FOR TRANSPORT DENSITIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=INTEGRAL%20ESTIMATES%20FOR%20TRANSPORT%20DENSITIES&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=DE%20PASCALE,%20L.&rft.date=2004-05&rft.volume=36&rft.issue=3&rft.spage=383&rft.epage=395&rft.pages=383-395&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/S0024609303003035&rft_dat=%3Ccambridge_cross%3E10_1112_S0024609303003035%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0024609303003035&rfr_iscdi=true |