EXISTENCE OF FELLER COCYCLES ON A C-ALGEBRA

The quantum stochastic differential equation dkt = kt ∘ θαβdΛβα(t) is considered on a unital C*-algebra, with separable noise dimension space. Necessary conditions on the matrix of bounded linear maps θ for the existence of a completely positive contractive solution are shown to be sufficient. It is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Bulletin of the London Mathematical Society 2001-09, Vol.33 (5), p.613-621
Hauptverfasser: LINDSAY, J. MARTIN, WILLS, STEPHEN J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue 5
container_start_page 613
container_title The Bulletin of the London Mathematical Society
container_volume 33
creator LINDSAY, J. MARTIN
WILLS, STEPHEN J.
description The quantum stochastic differential equation dkt = kt ∘ θαβdΛβα(t) is considered on a unital C*-algebra, with separable noise dimension space. Necessary conditions on the matrix of bounded linear maps θ for the existence of a completely positive contractive solution are shown to be sufficient. It is known that for completely positive contraction processes, k satisfies such an equation if and only if k is a regular Markovian cocycle. ‘Feller’ refers to an invariance condition analogous to probabilistic terminology if the algebra is thought of as a non-commutative topological space.
doi_str_mv 10.1112/S0024609301008128
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1112_S0024609301008128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0024609301008128</cupid><sourcerecordid>10_1112_S0024609301008128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-306b51252aabb9a6353cbb1984576983fb611c314d63a53d4ac914b018ce98b43</originalsourceid><addsrcrecordid>eNqFkEFLw0AUhBdRsFZ_gLfcJbpv32aTPabLtimsDTQVqpdlN00ltbWSKNp_b0qLF0FPc5j5HjOPkGugtwDA7gpKGRdUIgVKE2DJCekBFzJkwOgp6e3tcO-fk4u2XVEKSGPokRs9HxczPVE6yIfBUBujp4HK1aMyugjySZAGKkzNSA-m6SU5W7p1W10dtU8ehnqmstDko7FKTVhijBgiFT4CFjHnvJdOYISl9yATHsVCJrj0AqBE4AuBLsIFd6UE7ikkZSUTz7FP4HC3bLZt21RL-9bUG9fsLFC7X2t_re2Y-MB81utq9z9gB-a-oAKwI8MDWbfv1dcP6ZoXK2KMI5vNnyyfmYhlKrNZl8djO7fxTb14ruxq-9G8dh_5o983wIduRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EXISTENCE OF FELLER COCYCLES ON A C-ALGEBRA</title><source>Wiley Journals</source><source>Alma/SFX Local Collection</source><creator>LINDSAY, J. MARTIN ; WILLS, STEPHEN J.</creator><creatorcontrib>LINDSAY, J. MARTIN ; WILLS, STEPHEN J.</creatorcontrib><description>The quantum stochastic differential equation dkt = kt ∘ θαβdΛβα(t) is considered on a unital C*-algebra, with separable noise dimension space. Necessary conditions on the matrix of bounded linear maps θ for the existence of a completely positive contractive solution are shown to be sufficient. It is known that for completely positive contraction processes, k satisfies such an equation if and only if k is a regular Markovian cocycle. ‘Feller’ refers to an invariance condition analogous to probabilistic terminology if the algebra is thought of as a non-commutative topological space.</description><identifier>ISSN: 0024-6093</identifier><identifier>EISSN: 1469-2120</identifier><identifier>DOI: 10.1112/S0024609301008128</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>NOTES AND PAPERS</subject><ispartof>The Bulletin of the London Mathematical Society, 2001-09, Vol.33 (5), p.613-621</ispartof><rights>The London Mathematical Society 2001</rights><rights>2001 London Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-306b51252aabb9a6353cbb1984576983fb611c314d63a53d4ac914b018ce98b43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1112%2FS0024609301008128$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1112%2FS0024609301008128$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>LINDSAY, J. MARTIN</creatorcontrib><creatorcontrib>WILLS, STEPHEN J.</creatorcontrib><title>EXISTENCE OF FELLER COCYCLES ON A C-ALGEBRA</title><title>The Bulletin of the London Mathematical Society</title><addtitle>Bull. Lond. Math. Soc</addtitle><description>The quantum stochastic differential equation dkt = kt ∘ θαβdΛβα(t) is considered on a unital C*-algebra, with separable noise dimension space. Necessary conditions on the matrix of bounded linear maps θ for the existence of a completely positive contractive solution are shown to be sufficient. It is known that for completely positive contraction processes, k satisfies such an equation if and only if k is a regular Markovian cocycle. ‘Feller’ refers to an invariance condition analogous to probabilistic terminology if the algebra is thought of as a non-commutative topological space.</description><subject>NOTES AND PAPERS</subject><issn>0024-6093</issn><issn>1469-2120</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AUhBdRsFZ_gLfcJbpv32aTPabLtimsDTQVqpdlN00ltbWSKNp_b0qLF0FPc5j5HjOPkGugtwDA7gpKGRdUIgVKE2DJCekBFzJkwOgp6e3tcO-fk4u2XVEKSGPokRs9HxczPVE6yIfBUBujp4HK1aMyugjySZAGKkzNSA-m6SU5W7p1W10dtU8ehnqmstDko7FKTVhijBgiFT4CFjHnvJdOYISl9yATHsVCJrj0AqBE4AuBLsIFd6UE7ikkZSUTz7FP4HC3bLZt21RL-9bUG9fsLFC7X2t_re2Y-MB81utq9z9gB-a-oAKwI8MDWbfv1dcP6ZoXK2KMI5vNnyyfmYhlKrNZl8djO7fxTb14ruxq-9G8dh_5o983wIduRw</recordid><startdate>200109</startdate><enddate>200109</enddate><creator>LINDSAY, J. MARTIN</creator><creator>WILLS, STEPHEN J.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200109</creationdate><title>EXISTENCE OF FELLER COCYCLES ON A C-ALGEBRA</title><author>LINDSAY, J. MARTIN ; WILLS, STEPHEN J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-306b51252aabb9a6353cbb1984576983fb611c314d63a53d4ac914b018ce98b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>NOTES AND PAPERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>LINDSAY, J. MARTIN</creatorcontrib><creatorcontrib>WILLS, STEPHEN J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>The Bulletin of the London Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>LINDSAY, J. MARTIN</au><au>WILLS, STEPHEN J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXISTENCE OF FELLER COCYCLES ON A C-ALGEBRA</atitle><jtitle>The Bulletin of the London Mathematical Society</jtitle><addtitle>Bull. Lond. Math. Soc</addtitle><date>2001-09</date><risdate>2001</risdate><volume>33</volume><issue>5</issue><spage>613</spage><epage>621</epage><pages>613-621</pages><issn>0024-6093</issn><eissn>1469-2120</eissn><abstract>The quantum stochastic differential equation dkt = kt ∘ θαβdΛβα(t) is considered on a unital C*-algebra, with separable noise dimension space. Necessary conditions on the matrix of bounded linear maps θ for the existence of a completely positive contractive solution are shown to be sufficient. It is known that for completely positive contraction processes, k satisfies such an equation if and only if k is a regular Markovian cocycle. ‘Feller’ refers to an invariance condition analogous to probabilistic terminology if the algebra is thought of as a non-commutative topological space.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1112/S0024609301008128</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-6093
ispartof The Bulletin of the London Mathematical Society, 2001-09, Vol.33 (5), p.613-621
issn 0024-6093
1469-2120
language eng
recordid cdi_crossref_primary_10_1112_S0024609301008128
source Wiley Journals; Alma/SFX Local Collection
subjects NOTES AND PAPERS
title EXISTENCE OF FELLER COCYCLES ON A C-ALGEBRA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A38%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXISTENCE%20OF%20FELLER%20COCYCLES%20ON%20A%20C-ALGEBRA&rft.jtitle=The%20Bulletin%20of%20the%20London%20Mathematical%20Society&rft.au=LINDSAY,%20J.%20MARTIN&rft.date=2001-09&rft.volume=33&rft.issue=5&rft.spage=613&rft.epage=621&rft.pages=613-621&rft.issn=0024-6093&rft.eissn=1469-2120&rft_id=info:doi/10.1112/S0024609301008128&rft_dat=%3Ccambridge_cross%3E10_1112_S0024609301008128%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1112_S0024609301008128&rfr_iscdi=true