Optimal leaf life strategies determine V c,max dynamic during ontogeny
• Leaf photosynthetic properties, for example the maximum carboxylation velocity or V c,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf-level photosynthetic capacity as a function of leaf biochemical constrai...
Gespeichert in:
Veröffentlicht in: | The New phytologist 2020-10, Vol.228 (1), p.361-375 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 375 |
---|---|
container_issue | 1 |
container_start_page | 361 |
container_title | The New phytologist |
container_volume | 228 |
creator | Detto, Matteo Xu, Xiangtao |
description | • Leaf photosynthetic properties, for example the maximum carboxylation velocity or V
c,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf-level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light).
• The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels.
• Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and V
c,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between V
c,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models.
• This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first-step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models. |
doi_str_mv | 10.1111/nph.16712 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_nph_16712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968088</jstor_id><sourcerecordid>26968088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1542-440dac56e663555ade446c3be21a0909ecc5df04858a8c1d0a3cffc94af255653</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlYP_gAlV8Gtk89mj1KsCoVeVLwtaTKpW_aLZAv237tadS5zeB9eZh5CLhlM2TB3TfcxZXrG-BEZM6nzzDAxOyZjAG4yLfX7iJyltAWAXGl-SkaCy5kYwjFZrLq-rG1FK7SBVmVAmvpoe9yUmKjHHmNdNkjfqLut7Sf1-8bWpaN-F8tmQ9umbzfY7M_JSbBVwovfPSGvi4eX-VO2XD0-z--XmWNK8kxK8NYpjVoLpZT1KKV2Yo2cWcghR-eUDyCNMtY45sEKF4LLpQ1cKa3EhNwcel1sU4oYii4O58d9waD4dlEMLoofFwN7fWC73bpG_0_-PT8AVwdgm_o2_udc59qAMeILsbFjsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal leaf life strategies determine V c,max dynamic during ontogeny</title><source>MEDLINE</source><source>Wiley Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Detto, Matteo ; Xu, Xiangtao</creator><creatorcontrib>Detto, Matteo ; Xu, Xiangtao</creatorcontrib><description>• Leaf photosynthetic properties, for example the maximum carboxylation velocity or V
c,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf-level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light).
• The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels.
• Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and V
c,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between V
c,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models.
• This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first-step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.16712</identifier><identifier>PMID: 32473028</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>Carbon Dioxide ; Ecosystem ; Methods ; Nitrogen ; Photosynthesis ; Plant Leaves - metabolism ; Ribulose-Bisphosphate Carboxylase - metabolism</subject><ispartof>The New phytologist, 2020-10, Vol.228 (1), p.361-375</ispartof><rights>2020 The Authors © 2020 New Phytologist Trust</rights><rights>2020 The Authors New Phytologist © 2020 New Phytologist Trust.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1542-440dac56e663555ade446c3be21a0909ecc5df04858a8c1d0a3cffc94af255653</citedby><cites>FETCH-LOGICAL-c1542-440dac56e663555ade446c3be21a0909ecc5df04858a8c1d0a3cffc94af255653</cites><orcidid>0000-0003-0494-188X ; 0000-0002-9402-9474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968088$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968088$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32473028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Detto, Matteo</creatorcontrib><creatorcontrib>Xu, Xiangtao</creatorcontrib><title>Optimal leaf life strategies determine V c,max dynamic during ontogeny</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>• Leaf photosynthetic properties, for example the maximum carboxylation velocity or V
c,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf-level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light).
• The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels.
• Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and V
c,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between V
c,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models.
• This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first-step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.</description><subject>Carbon Dioxide</subject><subject>Ecosystem</subject><subject>Methods</subject><subject>Nitrogen</subject><subject>Photosynthesis</subject><subject>Plant Leaves - metabolism</subject><subject>Ribulose-Bisphosphate Carboxylase - metabolism</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1LAzEQhoMotlYP_gAlV8Gtk89mj1KsCoVeVLwtaTKpW_aLZAv237tadS5zeB9eZh5CLhlM2TB3TfcxZXrG-BEZM6nzzDAxOyZjAG4yLfX7iJyltAWAXGl-SkaCy5kYwjFZrLq-rG1FK7SBVmVAmvpoe9yUmKjHHmNdNkjfqLut7Sf1-8bWpaN-F8tmQ9umbzfY7M_JSbBVwovfPSGvi4eX-VO2XD0-z--XmWNK8kxK8NYpjVoLpZT1KKV2Yo2cWcghR-eUDyCNMtY45sEKF4LLpQ1cKa3EhNwcel1sU4oYii4O58d9waD4dlEMLoofFwN7fWC73bpG_0_-PT8AVwdgm_o2_udc59qAMeILsbFjsg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Detto, Matteo</creator><creator>Xu, Xiangtao</creator><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0494-188X</orcidid><orcidid>https://orcid.org/0000-0002-9402-9474</orcidid></search><sort><creationdate>20201001</creationdate><title>Optimal leaf life strategies determine V c,max dynamic during ontogeny</title><author>Detto, Matteo ; Xu, Xiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1542-440dac56e663555ade446c3be21a0909ecc5df04858a8c1d0a3cffc94af255653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Carbon Dioxide</topic><topic>Ecosystem</topic><topic>Methods</topic><topic>Nitrogen</topic><topic>Photosynthesis</topic><topic>Plant Leaves - metabolism</topic><topic>Ribulose-Bisphosphate Carboxylase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Detto, Matteo</creatorcontrib><creatorcontrib>Xu, Xiangtao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Detto, Matteo</au><au>Xu, Xiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal leaf life strategies determine V c,max dynamic during ontogeny</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>228</volume><issue>1</issue><spage>361</spage><epage>375</epage><pages>361-375</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>• Leaf photosynthetic properties, for example the maximum carboxylation velocity or V
c,max, change with leaf age due to ontogenetic processes. This study introduces an optimal dynamic allocation scheme to model changes in leaf-level photosynthetic capacity as a function of leaf biochemical constraints (costs of synthesis and defence), nitrogen availability and other environmental factors (e.g. light).
• The model consists of a system of equations describing RuBisCO synthesis and degradation within chloroplasts, defence and ageing at leaf levels, nitrogen transfer and carbon budget at plant levels.
• Model results show that optimal allocation principles explained RuBisCO dynamics with leaf age. An approximated analytical solution can reproduce the basic pattern of RuBisCO and V
c,max in rice and in two tropical tree species. The model also reveals leaf life complementarities that remained unexplained in previous approaches, as the interplay between V
c,max at maturation, life span and the decline in photosynthetic capacity with age. Furthermore, it explores the role of defence, which is not implemented in current models.
• This framework covers some of the existing gaps in integrating multiple processes across plant organs (chloroplast, leaf and whole plant) and is a first-step towards representing mechanistically leaf ontogenetic processes into physiological and ecosystem models.</abstract><cop>England</cop><pub>Wiley</pub><pmid>32473028</pmid><doi>10.1111/nph.16712</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-0494-188X</orcidid><orcidid>https://orcid.org/0000-0002-9402-9474</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2020-10, Vol.228 (1), p.361-375 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_crossref_primary_10_1111_nph_16712 |
source | MEDLINE; Wiley Journals; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection) |
subjects | Carbon Dioxide Ecosystem Methods Nitrogen Photosynthesis Plant Leaves - metabolism Ribulose-Bisphosphate Carboxylase - metabolism |
title | Optimal leaf life strategies determine V c,max dynamic during ontogeny |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20leaf%20life%20strategies%20determine%20V%20c,max%20dynamic%20during%20ontogeny&rft.jtitle=The%20New%20phytologist&rft.au=Detto,%20Matteo&rft.date=2020-10-01&rft.volume=228&rft.issue=1&rft.spage=361&rft.epage=375&rft.pages=361-375&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.16712&rft_dat=%3Cjstor_cross%3E26968088%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32473028&rft_jstor_id=26968088&rfr_iscdi=true |