Using accelerometry tags to quantify gray whale foraging behavior

High‐resolution tri‐axial accelerometry biologging tags have quantitatively described behaviors in baleen whale species that forage using lunges and continuous ram filtration. However, detailed quantitative descriptions of foraging behaviors do not exist for gray whales, a unique baleen whale specie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine mammal science 2024-11
Hauptverfasser: Colson, Kate M., Pirotta, Enrico, New, Leslie, Cade, David E., Calambokidis, John, Bierlich, K. C., Bird, Clara N., Ajó, Alejandro Fernandez, Hildebrand, Lisa, Trites, Andrew W., Torres, Leigh G.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Marine mammal science
container_volume
creator Colson, Kate M.
Pirotta, Enrico
New, Leslie
Cade, David E.
Calambokidis, John
Bierlich, K. C.
Bird, Clara N.
Ajó, Alejandro Fernandez
Hildebrand, Lisa
Trites, Andrew W.
Torres, Leigh G.
description High‐resolution tri‐axial accelerometry biologging tags have quantitatively described behaviors in baleen whale species that forage using lunges and continuous ram filtration. However, detailed quantitative descriptions of foraging behaviors do not exist for gray whales, a unique baleen whale species that primarily uses benthic suction feeding with a rolling component. We deployed suction cup biologging tags on Pacific Coast Feeding Group (PCFG) gray whales to quantify foraging behavior at the broad state (dive) and foraging tactic (roll event) scales. Hidden Markov models were used to describe three distinct states using turn angle, dive duration, pseudotrack tortuosity, and presence of roll events that can be interpreted as forage, search, and transit behavior. Classification and Regression Tree models best described foraging tactics (headstands, benthic digs, and side swims) using median pitch, depth to total length ratio, and absolute value of the median roll. On average, PCFG gray whales spent more time searching and performed more left‐rolled foraging tactics at shallower depths at night compared to during the day, potentially to track prey above them in the water column. Describing foraging behavior in PCFG gray whales enables examination of links between behavioral budgets, energetics, and the physiological impact of threats facing this group.
doi_str_mv 10.1111/mms.13210
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_mms_13210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_mms_13210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-b59ed4ef9a2a20281ed2d4d68c2851aeff50dae8ee2b1d447c96ae85c6c1833c3</originalsourceid><addsrcrecordid>eNotj7FOwzAURS0EEqUw8AdeGVL8HNtxxqoCilSJhc7Ri_2cBiUN2AGUvycF7nJ1h3Olw9gtiBXMue_7tIJcgjhjCyiUzQpTynO2EFaqTChTXrKrlN6EkFobsWDrfWqPDUfnqKM49DTGiY_YJD4O_OMTj2MbJt5EnPj3ATviYYjYnJCaDvjVDvGaXQTsEt3895LtHx9eN9ts9_L0vFnvMgdQjlmtS_KKQokSpZAWyEuvvLFOWg1IIWjhkSyRrMErVbjSzFM748DmucuX7O7v18UhpUiheo9tj3GqQFQn92p2r37d8x-zB037</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using accelerometry tags to quantify gray whale foraging behavior</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Colson, Kate M. ; Pirotta, Enrico ; New, Leslie ; Cade, David E. ; Calambokidis, John ; Bierlich, K. C. ; Bird, Clara N. ; Ajó, Alejandro Fernandez ; Hildebrand, Lisa ; Trites, Andrew W. ; Torres, Leigh G.</creator><creatorcontrib>Colson, Kate M. ; Pirotta, Enrico ; New, Leslie ; Cade, David E. ; Calambokidis, John ; Bierlich, K. C. ; Bird, Clara N. ; Ajó, Alejandro Fernandez ; Hildebrand, Lisa ; Trites, Andrew W. ; Torres, Leigh G.</creatorcontrib><description>High‐resolution tri‐axial accelerometry biologging tags have quantitatively described behaviors in baleen whale species that forage using lunges and continuous ram filtration. However, detailed quantitative descriptions of foraging behaviors do not exist for gray whales, a unique baleen whale species that primarily uses benthic suction feeding with a rolling component. We deployed suction cup biologging tags on Pacific Coast Feeding Group (PCFG) gray whales to quantify foraging behavior at the broad state (dive) and foraging tactic (roll event) scales. Hidden Markov models were used to describe three distinct states using turn angle, dive duration, pseudotrack tortuosity, and presence of roll events that can be interpreted as forage, search, and transit behavior. Classification and Regression Tree models best described foraging tactics (headstands, benthic digs, and side swims) using median pitch, depth to total length ratio, and absolute value of the median roll. On average, PCFG gray whales spent more time searching and performed more left‐rolled foraging tactics at shallower depths at night compared to during the day, potentially to track prey above them in the water column. Describing foraging behavior in PCFG gray whales enables examination of links between behavioral budgets, energetics, and the physiological impact of threats facing this group.</description><identifier>ISSN: 0824-0469</identifier><identifier>EISSN: 1748-7692</identifier><identifier>DOI: 10.1111/mms.13210</identifier><language>eng</language><ispartof>Marine mammal science, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c119t-b59ed4ef9a2a20281ed2d4d68c2851aeff50dae8ee2b1d447c96ae85c6c1833c3</cites><orcidid>0000-0002-2643-3950 ; 0000-0002-7082-4668 ; 0000-0002-5028-7172 ; 0000-0003-3541-3676 ; 0000-0003-3641-1242 ; 0000-0001-9724-6055</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Colson, Kate M.</creatorcontrib><creatorcontrib>Pirotta, Enrico</creatorcontrib><creatorcontrib>New, Leslie</creatorcontrib><creatorcontrib>Cade, David E.</creatorcontrib><creatorcontrib>Calambokidis, John</creatorcontrib><creatorcontrib>Bierlich, K. C.</creatorcontrib><creatorcontrib>Bird, Clara N.</creatorcontrib><creatorcontrib>Ajó, Alejandro Fernandez</creatorcontrib><creatorcontrib>Hildebrand, Lisa</creatorcontrib><creatorcontrib>Trites, Andrew W.</creatorcontrib><creatorcontrib>Torres, Leigh G.</creatorcontrib><title>Using accelerometry tags to quantify gray whale foraging behavior</title><title>Marine mammal science</title><description>High‐resolution tri‐axial accelerometry biologging tags have quantitatively described behaviors in baleen whale species that forage using lunges and continuous ram filtration. However, detailed quantitative descriptions of foraging behaviors do not exist for gray whales, a unique baleen whale species that primarily uses benthic suction feeding with a rolling component. We deployed suction cup biologging tags on Pacific Coast Feeding Group (PCFG) gray whales to quantify foraging behavior at the broad state (dive) and foraging tactic (roll event) scales. Hidden Markov models were used to describe three distinct states using turn angle, dive duration, pseudotrack tortuosity, and presence of roll events that can be interpreted as forage, search, and transit behavior. Classification and Regression Tree models best described foraging tactics (headstands, benthic digs, and side swims) using median pitch, depth to total length ratio, and absolute value of the median roll. On average, PCFG gray whales spent more time searching and performed more left‐rolled foraging tactics at shallower depths at night compared to during the day, potentially to track prey above them in the water column. Describing foraging behavior in PCFG gray whales enables examination of links between behavioral budgets, energetics, and the physiological impact of threats facing this group.</description><issn>0824-0469</issn><issn>1748-7692</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj7FOwzAURS0EEqUw8AdeGVL8HNtxxqoCilSJhc7Ri_2cBiUN2AGUvycF7nJ1h3Olw9gtiBXMue_7tIJcgjhjCyiUzQpTynO2EFaqTChTXrKrlN6EkFobsWDrfWqPDUfnqKM49DTGiY_YJD4O_OMTj2MbJt5EnPj3ATviYYjYnJCaDvjVDvGaXQTsEt3895LtHx9eN9ts9_L0vFnvMgdQjlmtS_KKQokSpZAWyEuvvLFOWg1IIWjhkSyRrMErVbjSzFM748DmucuX7O7v18UhpUiheo9tj3GqQFQn92p2r37d8x-zB037</recordid><startdate>20241129</startdate><enddate>20241129</enddate><creator>Colson, Kate M.</creator><creator>Pirotta, Enrico</creator><creator>New, Leslie</creator><creator>Cade, David E.</creator><creator>Calambokidis, John</creator><creator>Bierlich, K. C.</creator><creator>Bird, Clara N.</creator><creator>Ajó, Alejandro Fernandez</creator><creator>Hildebrand, Lisa</creator><creator>Trites, Andrew W.</creator><creator>Torres, Leigh G.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2643-3950</orcidid><orcidid>https://orcid.org/0000-0002-7082-4668</orcidid><orcidid>https://orcid.org/0000-0002-5028-7172</orcidid><orcidid>https://orcid.org/0000-0003-3541-3676</orcidid><orcidid>https://orcid.org/0000-0003-3641-1242</orcidid><orcidid>https://orcid.org/0000-0001-9724-6055</orcidid></search><sort><creationdate>20241129</creationdate><title>Using accelerometry tags to quantify gray whale foraging behavior</title><author>Colson, Kate M. ; Pirotta, Enrico ; New, Leslie ; Cade, David E. ; Calambokidis, John ; Bierlich, K. C. ; Bird, Clara N. ; Ajó, Alejandro Fernandez ; Hildebrand, Lisa ; Trites, Andrew W. ; Torres, Leigh G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-b59ed4ef9a2a20281ed2d4d68c2851aeff50dae8ee2b1d447c96ae85c6c1833c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colson, Kate M.</creatorcontrib><creatorcontrib>Pirotta, Enrico</creatorcontrib><creatorcontrib>New, Leslie</creatorcontrib><creatorcontrib>Cade, David E.</creatorcontrib><creatorcontrib>Calambokidis, John</creatorcontrib><creatorcontrib>Bierlich, K. C.</creatorcontrib><creatorcontrib>Bird, Clara N.</creatorcontrib><creatorcontrib>Ajó, Alejandro Fernandez</creatorcontrib><creatorcontrib>Hildebrand, Lisa</creatorcontrib><creatorcontrib>Trites, Andrew W.</creatorcontrib><creatorcontrib>Torres, Leigh G.</creatorcontrib><collection>CrossRef</collection><jtitle>Marine mammal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colson, Kate M.</au><au>Pirotta, Enrico</au><au>New, Leslie</au><au>Cade, David E.</au><au>Calambokidis, John</au><au>Bierlich, K. C.</au><au>Bird, Clara N.</au><au>Ajó, Alejandro Fernandez</au><au>Hildebrand, Lisa</au><au>Trites, Andrew W.</au><au>Torres, Leigh G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using accelerometry tags to quantify gray whale foraging behavior</atitle><jtitle>Marine mammal science</jtitle><date>2024-11-29</date><risdate>2024</risdate><issn>0824-0469</issn><eissn>1748-7692</eissn><abstract>High‐resolution tri‐axial accelerometry biologging tags have quantitatively described behaviors in baleen whale species that forage using lunges and continuous ram filtration. However, detailed quantitative descriptions of foraging behaviors do not exist for gray whales, a unique baleen whale species that primarily uses benthic suction feeding with a rolling component. We deployed suction cup biologging tags on Pacific Coast Feeding Group (PCFG) gray whales to quantify foraging behavior at the broad state (dive) and foraging tactic (roll event) scales. Hidden Markov models were used to describe three distinct states using turn angle, dive duration, pseudotrack tortuosity, and presence of roll events that can be interpreted as forage, search, and transit behavior. Classification and Regression Tree models best described foraging tactics (headstands, benthic digs, and side swims) using median pitch, depth to total length ratio, and absolute value of the median roll. On average, PCFG gray whales spent more time searching and performed more left‐rolled foraging tactics at shallower depths at night compared to during the day, potentially to track prey above them in the water column. Describing foraging behavior in PCFG gray whales enables examination of links between behavioral budgets, energetics, and the physiological impact of threats facing this group.</abstract><doi>10.1111/mms.13210</doi><orcidid>https://orcid.org/0000-0002-2643-3950</orcidid><orcidid>https://orcid.org/0000-0002-7082-4668</orcidid><orcidid>https://orcid.org/0000-0002-5028-7172</orcidid><orcidid>https://orcid.org/0000-0003-3541-3676</orcidid><orcidid>https://orcid.org/0000-0003-3641-1242</orcidid><orcidid>https://orcid.org/0000-0001-9724-6055</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0824-0469
ispartof Marine mammal science, 2024-11
issn 0824-0469
1748-7692
language eng
recordid cdi_crossref_primary_10_1111_mms_13210
source Wiley Online Library Journals Frontfile Complete
title Using accelerometry tags to quantify gray whale foraging behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20accelerometry%20tags%20to%20quantify%20gray%20whale%20foraging%20behavior&rft.jtitle=Marine%20mammal%20science&rft.au=Colson,%20Kate%20M.&rft.date=2024-11-29&rft.issn=0824-0469&rft.eissn=1748-7692&rft_id=info:doi/10.1111/mms.13210&rft_dat=%3Ccrossref%3E10_1111_mms_13210%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true