Monitoring panels of sparse functional data

Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with stati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2024-11
Hauptverfasser: Kutta, Tim, Jach, Agnieszka, Kokoszka, Piotr
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of time series analysis
container_volume
creator Kutta, Tim
Jach, Agnieszka
Kokoszka, Piotr
description Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with statistical certainty. Our approach relies on a Full‐CUSUM statistic that has proved to be powerful in finite dimensions but has not been applied to functional data. To account for the practically relevant problem of sparsity, we formulate our results for triangular arrays of nonstationary, sparse estimators. The derivation of our asymptotic theory relies on new Gaussian approximations on the Banach space of continuous functions, which imply new convergence results for the change point detectors. We illustrate our approach with a simulation study and application to intraday returns on exchange traded funds.
doi_str_mv 10.1111/jtsa.12796
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_jtsa_12796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_jtsa_12796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c120t-15fa60eab1ea3deabf088914c22cd5b54274808f5088e1dc29f12d980f5ab5ec3</originalsourceid><addsrcrecordid>eNotj81KxDAURoMoWEc3PkHXSsbcNGmSpQw6CiOzGdfhNj_SoaYlqQvf3o76bQ58iwOHkFtga1j2cJwLroEr056RCkSrqNGGn5OKgWioUZpfkqtSjoxBKxRU5P5tTP085j591BOmMJR6jHWZMJdQx6_k5n5MONQeZ7wmFxGHEm7-uSLvz0-HzQvd7bevm8cddcDZTEFGbFnADgI2fmFkWhsQjnPnZScFV0IzHeVyB_COmwjcG82ixE4G16zI3Z_X5bGUHKKdcv-J-dsCs6dMe8q0v5nND667RgU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monitoring panels of sparse functional data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kutta, Tim ; Jach, Agnieszka ; Kokoszka, Piotr</creator><creatorcontrib>Kutta, Tim ; Jach, Agnieszka ; Kokoszka, Piotr</creatorcontrib><description>Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with statistical certainty. Our approach relies on a Full‐CUSUM statistic that has proved to be powerful in finite dimensions but has not been applied to functional data. To account for the practically relevant problem of sparsity, we formulate our results for triangular arrays of nonstationary, sparse estimators. The derivation of our asymptotic theory relies on new Gaussian approximations on the Banach space of continuous functions, which imply new convergence results for the change point detectors. We illustrate our approach with a simulation study and application to intraday returns on exchange traded funds.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/jtsa.12796</identifier><language>eng</language><ispartof>Journal of time series analysis, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c120t-15fa60eab1ea3deabf088914c22cd5b54274808f5088e1dc29f12d980f5ab5ec3</cites><orcidid>0000-0001-9979-6536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kutta, Tim</creatorcontrib><creatorcontrib>Jach, Agnieszka</creatorcontrib><creatorcontrib>Kokoszka, Piotr</creatorcontrib><title>Monitoring panels of sparse functional data</title><title>Journal of time series analysis</title><description>Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with statistical certainty. Our approach relies on a Full‐CUSUM statistic that has proved to be powerful in finite dimensions but has not been applied to functional data. To account for the practically relevant problem of sparsity, we formulate our results for triangular arrays of nonstationary, sparse estimators. The derivation of our asymptotic theory relies on new Gaussian approximations on the Banach space of continuous functions, which imply new convergence results for the change point detectors. We illustrate our approach with a simulation study and application to intraday returns on exchange traded funds.</description><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj81KxDAURoMoWEc3PkHXSsbcNGmSpQw6CiOzGdfhNj_SoaYlqQvf3o76bQ58iwOHkFtga1j2cJwLroEr056RCkSrqNGGn5OKgWioUZpfkqtSjoxBKxRU5P5tTP085j591BOmMJR6jHWZMJdQx6_k5n5MONQeZ7wmFxGHEm7-uSLvz0-HzQvd7bevm8cddcDZTEFGbFnADgI2fmFkWhsQjnPnZScFV0IzHeVyB_COmwjcG82ixE4G16zI3Z_X5bGUHKKdcv-J-dsCs6dMe8q0v5nND667RgU</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Kutta, Tim</creator><creator>Jach, Agnieszka</creator><creator>Kokoszka, Piotr</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9979-6536</orcidid></search><sort><creationdate>20241121</creationdate><title>Monitoring panels of sparse functional data</title><author>Kutta, Tim ; Jach, Agnieszka ; Kokoszka, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c120t-15fa60eab1ea3deabf088914c22cd5b54274808f5088e1dc29f12d980f5ab5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutta, Tim</creatorcontrib><creatorcontrib>Jach, Agnieszka</creatorcontrib><creatorcontrib>Kokoszka, Piotr</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutta, Tim</au><au>Jach, Agnieszka</au><au>Kokoszka, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring panels of sparse functional data</atitle><jtitle>Journal of time series analysis</jtitle><date>2024-11-21</date><risdate>2024</risdate><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with statistical certainty. Our approach relies on a Full‐CUSUM statistic that has proved to be powerful in finite dimensions but has not been applied to functional data. To account for the practically relevant problem of sparsity, we formulate our results for triangular arrays of nonstationary, sparse estimators. The derivation of our asymptotic theory relies on new Gaussian approximations on the Banach space of continuous functions, which imply new convergence results for the change point detectors. We illustrate our approach with a simulation study and application to intraday returns on exchange traded funds.</abstract><doi>10.1111/jtsa.12796</doi><orcidid>https://orcid.org/0000-0001-9979-6536</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0143-9782
ispartof Journal of time series analysis, 2024-11
issn 0143-9782
1467-9892
language eng
recordid cdi_crossref_primary_10_1111_jtsa_12796
source Wiley Online Library Journals Frontfile Complete
title Monitoring panels of sparse functional data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20panels%20of%20sparse%20functional%20data&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Kutta,%20Tim&rft.date=2024-11-21&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/jtsa.12796&rft_dat=%3Ccrossref%3E10_1111_jtsa_12796%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true