Monitoring panels of sparse functional data
Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with stati...
Gespeichert in:
Veröffentlicht in: | Journal of time series analysis 2024-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of time series analysis |
container_volume | |
creator | Kutta, Tim Jach, Agnieszka Kokoszka, Piotr |
description | Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with statistical certainty. Our approach relies on a Full‐CUSUM statistic that has proved to be powerful in finite dimensions but has not been applied to functional data. To account for the practically relevant problem of sparsity, we formulate our results for triangular arrays of nonstationary, sparse estimators. The derivation of our asymptotic theory relies on new Gaussian approximations on the Banach space of continuous functions, which imply new convergence results for the change point detectors. We illustrate our approach with a simulation study and application to intraday returns on exchange traded funds. |
doi_str_mv | 10.1111/jtsa.12796 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_jtsa_12796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_jtsa_12796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c120t-15fa60eab1ea3deabf088914c22cd5b54274808f5088e1dc29f12d980f5ab5ec3</originalsourceid><addsrcrecordid>eNotj81KxDAURoMoWEc3PkHXSsbcNGmSpQw6CiOzGdfhNj_SoaYlqQvf3o76bQ58iwOHkFtga1j2cJwLroEr056RCkSrqNGGn5OKgWioUZpfkqtSjoxBKxRU5P5tTP085j591BOmMJR6jHWZMJdQx6_k5n5MONQeZ7wmFxGHEm7-uSLvz0-HzQvd7bevm8cddcDZTEFGbFnADgI2fmFkWhsQjnPnZScFV0IzHeVyB_COmwjcG82ixE4G16zI3Z_X5bGUHKKdcv-J-dsCs6dMe8q0v5nND667RgU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Monitoring panels of sparse functional data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kutta, Tim ; Jach, Agnieszka ; Kokoszka, Piotr</creator><creatorcontrib>Kutta, Tim ; Jach, Agnieszka ; Kokoszka, Piotr</creatorcontrib><description>Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with statistical certainty. Our approach relies on a Full‐CUSUM statistic that has proved to be powerful in finite dimensions but has not been applied to functional data. To account for the practically relevant problem of sparsity, we formulate our results for triangular arrays of nonstationary, sparse estimators. The derivation of our asymptotic theory relies on new Gaussian approximations on the Banach space of continuous functions, which imply new convergence results for the change point detectors. We illustrate our approach with a simulation study and application to intraday returns on exchange traded funds.</description><identifier>ISSN: 0143-9782</identifier><identifier>EISSN: 1467-9892</identifier><identifier>DOI: 10.1111/jtsa.12796</identifier><language>eng</language><ispartof>Journal of time series analysis, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c120t-15fa60eab1ea3deabf088914c22cd5b54274808f5088e1dc29f12d980f5ab5ec3</cites><orcidid>0000-0001-9979-6536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Kutta, Tim</creatorcontrib><creatorcontrib>Jach, Agnieszka</creatorcontrib><creatorcontrib>Kokoszka, Piotr</creatorcontrib><title>Monitoring panels of sparse functional data</title><title>Journal of time series analysis</title><description>Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with statistical certainty. Our approach relies on a Full‐CUSUM statistic that has proved to be powerful in finite dimensions but has not been applied to functional data. To account for the practically relevant problem of sparsity, we formulate our results for triangular arrays of nonstationary, sparse estimators. The derivation of our asymptotic theory relies on new Gaussian approximations on the Banach space of continuous functions, which imply new convergence results for the change point detectors. We illustrate our approach with a simulation study and application to intraday returns on exchange traded funds.</description><issn>0143-9782</issn><issn>1467-9892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj81KxDAURoMoWEc3PkHXSsbcNGmSpQw6CiOzGdfhNj_SoaYlqQvf3o76bQ58iwOHkFtga1j2cJwLroEr056RCkSrqNGGn5OKgWioUZpfkqtSjoxBKxRU5P5tTP085j591BOmMJR6jHWZMJdQx6_k5n5MONQeZ7wmFxGHEm7-uSLvz0-HzQvd7bevm8cddcDZTEFGbFnADgI2fmFkWhsQjnPnZScFV0IzHeVyB_COmwjcG82ixE4G16zI3Z_X5bGUHKKdcv-J-dsCs6dMe8q0v5nND667RgU</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Kutta, Tim</creator><creator>Jach, Agnieszka</creator><creator>Kokoszka, Piotr</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9979-6536</orcidid></search><sort><creationdate>20241121</creationdate><title>Monitoring panels of sparse functional data</title><author>Kutta, Tim ; Jach, Agnieszka ; Kokoszka, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c120t-15fa60eab1ea3deabf088914c22cd5b54274808f5088e1dc29f12d980f5ab5ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kutta, Tim</creatorcontrib><creatorcontrib>Jach, Agnieszka</creatorcontrib><creatorcontrib>Kokoszka, Piotr</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of time series analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kutta, Tim</au><au>Jach, Agnieszka</au><au>Kokoszka, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monitoring panels of sparse functional data</atitle><jtitle>Journal of time series analysis</jtitle><date>2024-11-21</date><risdate>2024</risdate><issn>0143-9782</issn><eissn>1467-9892</eissn><abstract>Panels of random functions are common in applications of functional data analysis. They often occur when sequences of functions are observed at a number of different locations. We propose a methodology to monitor for structural breaks in such panels and to identify the changing components with statistical certainty. Our approach relies on a Full‐CUSUM statistic that has proved to be powerful in finite dimensions but has not been applied to functional data. To account for the practically relevant problem of sparsity, we formulate our results for triangular arrays of nonstationary, sparse estimators. The derivation of our asymptotic theory relies on new Gaussian approximations on the Banach space of continuous functions, which imply new convergence results for the change point detectors. We illustrate our approach with a simulation study and application to intraday returns on exchange traded funds.</abstract><doi>10.1111/jtsa.12796</doi><orcidid>https://orcid.org/0000-0001-9979-6536</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-9782 |
ispartof | Journal of time series analysis, 2024-11 |
issn | 0143-9782 1467-9892 |
language | eng |
recordid | cdi_crossref_primary_10_1111_jtsa_12796 |
source | Wiley Online Library Journals Frontfile Complete |
title | Monitoring panels of sparse functional data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A06%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monitoring%20panels%20of%20sparse%20functional%20data&rft.jtitle=Journal%20of%20time%20series%20analysis&rft.au=Kutta,%20Tim&rft.date=2024-11-21&rft.issn=0143-9782&rft.eissn=1467-9892&rft_id=info:doi/10.1111/jtsa.12796&rft_dat=%3Ccrossref%3E10_1111_jtsa_12796%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |