Densification, mechanical, and tribological properties of ZrB 2 ‐ZrC x composites produced by reactive hot pressing

ZrB 2 ‐ZrC x composites were produced using Zr:B 4 C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrC x ) with different lat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2020-11, Vol.103 (11), p.6120-6135
Hauptverfasser: Kannan, Rajaguru, Rangaraj, Lingappa
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6135
container_issue 11
container_start_page 6120
container_title Journal of the American Ceramic Society
container_volume 103
creator Kannan, Rajaguru
Rangaraj, Lingappa
description ZrB 2 ‐ZrC x composites were produced using Zr:B 4 C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrC x ) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B 4 C composition from 86% to 99%. Microstructural studies on Zr‐rich composites showed a reduction in unreacted B 4 C particles and enriched elongated ZrB 2 platelets. Reaction and densification mechanism in 4Zr:B 4 C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C,
doi_str_mv 10.1111/jace.17338
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_jace_17338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_jace_17338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c768-97365b71a218e98c8709ff3b64e004e49689113f5838af63bc3d3259663a1f7f3</originalsourceid><addsrcrecordid>eNotkM1OwzAQhC0EEqVw4Qn2jJpix4l_jlB-pUpceuolcpx166qNIztF9MYj8Iw8CSkwl9XMrObwEXLN6JQNut0Yi1MmOVcnZMTKkmW5ZuKUjCileSZVTs_JRUqbwTKtihHZP2CbvPPW9D60E9ihXZt2sNsJmLaBPvo6bMPqmEAXQ4ex95ggOFjGe8jh-_NrGWfwATbsupB8P5TDX7O32EB9gIjG9v4dYR36ocCUfLu6JGfObBNe_d8xWTw9LmYv2fzt-XV2N8-sFCrTkouylszkTKFWVkmqneO1KJDSAgstlGaMu1JxZZzgteUNz0stBDfMScfH5OZv1saQUkRXddHvTDxUjFZHXtWRV_XLi_8AsXFflQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Densification, mechanical, and tribological properties of ZrB 2 ‐ZrC x composites produced by reactive hot pressing</title><source>Access via Wiley Online Library</source><creator>Kannan, Rajaguru ; Rangaraj, Lingappa</creator><creatorcontrib>Kannan, Rajaguru ; Rangaraj, Lingappa</creatorcontrib><description>ZrB 2 ‐ZrC x composites were produced using Zr:B 4 C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrC x ) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B 4 C composition from 86% to 99%. Microstructural studies on Zr‐rich composites showed a reduction in unreacted B 4 C particles and enriched elongated ZrB 2 platelets. Reaction and densification mechanism in 4Zr:B 4 C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C, &lt;40 vol.% of unreacted Zr was observed during the densification process. Concurrently, low energies of carbon diffusion and carbon vacancy formation were found to enhance nonstoichiometric ZrC x formation, which was found to be responsible for the completion of the reaction. The plastic deformation of unreacted Zr was responsible for the densification of the ZrB 2 ‐ZrC x composite. The results clearly showed that the applied pressure is five times lower than the reported values. Moreover, a temperature of 1200°C was sufficient to produce dense ZrB 2 ‐ZrC x composites. The improved microhardness, flexural strength, fracture toughness, and specific wear rate were 8.2‐15 GPa, 265‐590 MPa, 2.82‐6.33 MPa.m 1/2 , and 1.43‐0.376 × 10 −2 mm 2 /N, respectively.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.17338</identifier><language>eng</language><ispartof>Journal of the American Ceramic Society, 2020-11, Vol.103 (11), p.6120-6135</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c768-97365b71a218e98c8709ff3b64e004e49689113f5838af63bc3d3259663a1f7f3</citedby><cites>FETCH-LOGICAL-c768-97365b71a218e98c8709ff3b64e004e49689113f5838af63bc3d3259663a1f7f3</cites><orcidid>0000-0003-4596-3129 ; 0000-0002-6045-9126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kannan, Rajaguru</creatorcontrib><creatorcontrib>Rangaraj, Lingappa</creatorcontrib><title>Densification, mechanical, and tribological properties of ZrB 2 ‐ZrC x composites produced by reactive hot pressing</title><title>Journal of the American Ceramic Society</title><description>ZrB 2 ‐ZrC x composites were produced using Zr:B 4 C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrC x ) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B 4 C composition from 86% to 99%. Microstructural studies on Zr‐rich composites showed a reduction in unreacted B 4 C particles and enriched elongated ZrB 2 platelets. Reaction and densification mechanism in 4Zr:B 4 C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C, &lt;40 vol.% of unreacted Zr was observed during the densification process. Concurrently, low energies of carbon diffusion and carbon vacancy formation were found to enhance nonstoichiometric ZrC x formation, which was found to be responsible for the completion of the reaction. The plastic deformation of unreacted Zr was responsible for the densification of the ZrB 2 ‐ZrC x composite. The results clearly showed that the applied pressure is five times lower than the reported values. Moreover, a temperature of 1200°C was sufficient to produce dense ZrB 2 ‐ZrC x composites. The improved microhardness, flexural strength, fracture toughness, and specific wear rate were 8.2‐15 GPa, 265‐590 MPa, 2.82‐6.33 MPa.m 1/2 , and 1.43‐0.376 × 10 −2 mm 2 /N, respectively.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkM1OwzAQhC0EEqVw4Qn2jJpix4l_jlB-pUpceuolcpx166qNIztF9MYj8Iw8CSkwl9XMrObwEXLN6JQNut0Yi1MmOVcnZMTKkmW5ZuKUjCileSZVTs_JRUqbwTKtihHZP2CbvPPW9D60E9ihXZt2sNsJmLaBPvo6bMPqmEAXQ4ex95ggOFjGe8jh-_NrGWfwATbsupB8P5TDX7O32EB9gIjG9v4dYR36ocCUfLu6JGfObBNe_d8xWTw9LmYv2fzt-XV2N8-sFCrTkouylszkTKFWVkmqneO1KJDSAgstlGaMu1JxZZzgteUNz0stBDfMScfH5OZv1saQUkRXddHvTDxUjFZHXtWRV_XLi_8AsXFflQ</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Kannan, Rajaguru</creator><creator>Rangaraj, Lingappa</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4596-3129</orcidid><orcidid>https://orcid.org/0000-0002-6045-9126</orcidid></search><sort><creationdate>202011</creationdate><title>Densification, mechanical, and tribological properties of ZrB 2 ‐ZrC x composites produced by reactive hot pressing</title><author>Kannan, Rajaguru ; Rangaraj, Lingappa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c768-97365b71a218e98c8709ff3b64e004e49689113f5838af63bc3d3259663a1f7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kannan, Rajaguru</creatorcontrib><creatorcontrib>Rangaraj, Lingappa</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kannan, Rajaguru</au><au>Rangaraj, Lingappa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Densification, mechanical, and tribological properties of ZrB 2 ‐ZrC x composites produced by reactive hot pressing</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2020-11</date><risdate>2020</risdate><volume>103</volume><issue>11</issue><spage>6120</spage><epage>6135</epage><pages>6120-6135</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>ZrB 2 ‐ZrC x composites were produced using Zr:B 4 C powder mixtures in the molar ratios of 3:1, 3.5:1, 4:1, and 5:1 by reactive hot pressing (RHP) at 4‐7 MPa, 1200°C for 60 minutes. X‐ray diffraction analyses confirmed the formation of nonstoichiometric zirconium carbide (ZrC x ) with different lattice parameters and enhanced carbide formation by increasing the Zr mole fraction. An increase in applied pressure from 4 to 7 MPa was responsible for the improved relative density (RD) of 4Zr:B 4 C composition from 86% to 99%. Microstructural studies on Zr‐rich composites showed a reduction in unreacted B 4 C particles and enriched elongated ZrB 2 platelets. Reaction and densification mechanism in 4Zr:B 4 C composition were studied as a function of temperature increased from 600 to 1200°C at an applied constant pressure of 7 MPa. After 1000°C, &lt;40 vol.% of unreacted Zr was observed during the densification process. Concurrently, low energies of carbon diffusion and carbon vacancy formation were found to enhance nonstoichiometric ZrC x formation, which was found to be responsible for the completion of the reaction. The plastic deformation of unreacted Zr was responsible for the densification of the ZrB 2 ‐ZrC x composite. The results clearly showed that the applied pressure is five times lower than the reported values. Moreover, a temperature of 1200°C was sufficient to produce dense ZrB 2 ‐ZrC x composites. The improved microhardness, flexural strength, fracture toughness, and specific wear rate were 8.2‐15 GPa, 265‐590 MPa, 2.82‐6.33 MPa.m 1/2 , and 1.43‐0.376 × 10 −2 mm 2 /N, respectively.</abstract><doi>10.1111/jace.17338</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-4596-3129</orcidid><orcidid>https://orcid.org/0000-0002-6045-9126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2020-11, Vol.103 (11), p.6120-6135
issn 0002-7820
1551-2916
language eng
recordid cdi_crossref_primary_10_1111_jace_17338
source Access via Wiley Online Library
title Densification, mechanical, and tribological properties of ZrB 2 ‐ZrC x composites produced by reactive hot pressing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T04%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Densification,%20mechanical,%20and%20tribological%20properties%20of%20ZrB%202%20%E2%80%90ZrC%20x%20composites%20produced%20by%20reactive%20hot%20pressing&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Kannan,%20Rajaguru&rft.date=2020-11&rft.volume=103&rft.issue=11&rft.spage=6120&rft.epage=6135&rft.pages=6120-6135&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.17338&rft_dat=%3Ccrossref%3E10_1111_jace_17338%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true