Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction
The capture of sulfur dioxide (SO 2 ) using dehydrated Na 6 [AlSiO 4 ] 6 sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number...
Gespeichert in:
Veröffentlicht in: | Journal of the American Ceramic Society 2019-06, Vol.102 (6), p.3663-3672 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3672 |
---|---|
container_issue | 6 |
container_start_page | 3663 |
container_title | Journal of the American Ceramic Society |
container_volume | 102 |
creator | Wang, Yinglou Jiang, Yong Hu, Shuanglin Peng, Sai Xu, Canhui Lu, Anxian |
description | The capture of sulfur dioxide (SO
2
) using dehydrated Na
6
[AlSiO
4
]
6
sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number of SO
2
adsorbates. Upon adsorption, the S atom of single SO
2
molecule tends to align to the framework O
2−
and the two oxygen atoms are oriented to the framework Na
+
, through electrostatic interactions and with a minor charge transfer. Increasing the number of SO
2
adsorbates, the Na
6
[AlSiO
4
]
6
sodalite framework shrinks first and then expands. Statistical thermodynamics analysis suggests that the capture reaches its saturation limit of four SO
2
molecules per Na
6
[AlSiO
4
]
6
formula (~300 mg/g) at room temperature and a low SO
2
partial pressure of 0.001 atm, indicating that dehydrated Na
6
[AlSiO
4
]
6
can be an efficient SO
2
sorbent even at its extremely low concentrations. Higher SO
2
partial pressures lead to a higher capture capacity. A low baking temperature of 100‐150°C can efficiently release the adsorbed SO
2
and hence restore the capture capacity of Na
6
[AlSiO
4
]
6
. |
doi_str_mv | 10.1111/jace.16223 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_jace_16223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_jace_16223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c146t-a98ea09de8eb32bb30dc6c5804c9cb840f9e4413919bee889950d964cd1b6fc33</originalsourceid><addsrcrecordid>eNotkEtLQzEQhYMoWKsbf0HWwq153Zi4K9WqUOyiuhK55DHXptxHSbKw_95Unc3hcOYMw4fQNSUzWuZ2ZxzMqGSMn6AJrWtaMU3lKZoQQlh1pxg5Rxcp7YqlWokJ-n6A7cFHk8HjV4Ml_ph3m7DGAn8Wk0ZvupABm4QN3sexDykMX3izxqyE0cKQcV_KMZjuHs9xG2LKZTEMLuw7SDhvIfajPwymDy6VBHxwOYzDJTprTZfg6l-n6H35-LZ4rlbrp5fFfFU5KmSujFZgiPagwHJmLSfeSVcrIpx2VgnSahCCck21BVBK65p4LYXz1MrWcT5FN393XRxTitA25bvexENDSXNk1hyZNb_M-A9ngV_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction</title><source>Wiley Online Library Journals</source><creator>Wang, Yinglou ; Jiang, Yong ; Hu, Shuanglin ; Peng, Sai ; Xu, Canhui ; Lu, Anxian</creator><creatorcontrib>Wang, Yinglou ; Jiang, Yong ; Hu, Shuanglin ; Peng, Sai ; Xu, Canhui ; Lu, Anxian</creatorcontrib><description>The capture of sulfur dioxide (SO
2
) using dehydrated Na
6
[AlSiO
4
]
6
sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number of SO
2
adsorbates. Upon adsorption, the S atom of single SO
2
molecule tends to align to the framework O
2−
and the two oxygen atoms are oriented to the framework Na
+
, through electrostatic interactions and with a minor charge transfer. Increasing the number of SO
2
adsorbates, the Na
6
[AlSiO
4
]
6
sodalite framework shrinks first and then expands. Statistical thermodynamics analysis suggests that the capture reaches its saturation limit of four SO
2
molecules per Na
6
[AlSiO
4
]
6
formula (~300 mg/g) at room temperature and a low SO
2
partial pressure of 0.001 atm, indicating that dehydrated Na
6
[AlSiO
4
]
6
can be an efficient SO
2
sorbent even at its extremely low concentrations. Higher SO
2
partial pressures lead to a higher capture capacity. A low baking temperature of 100‐150°C can efficiently release the adsorbed SO
2
and hence restore the capture capacity of Na
6
[AlSiO
4
]
6
.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16223</identifier><language>eng</language><ispartof>Journal of the American Ceramic Society, 2019-06, Vol.102 (6), p.3663-3672</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c146t-a98ea09de8eb32bb30dc6c5804c9cb840f9e4413919bee889950d964cd1b6fc33</citedby><cites>FETCH-LOGICAL-c146t-a98ea09de8eb32bb30dc6c5804c9cb840f9e4413919bee889950d964cd1b6fc33</cites><orcidid>0000-0002-8263-8547 ; 0000-0001-9729-5500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yinglou</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Hu, Shuanglin</creatorcontrib><creatorcontrib>Peng, Sai</creatorcontrib><creatorcontrib>Xu, Canhui</creatorcontrib><creatorcontrib>Lu, Anxian</creatorcontrib><title>Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction</title><title>Journal of the American Ceramic Society</title><description>The capture of sulfur dioxide (SO
2
) using dehydrated Na
6
[AlSiO
4
]
6
sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number of SO
2
adsorbates. Upon adsorption, the S atom of single SO
2
molecule tends to align to the framework O
2−
and the two oxygen atoms are oriented to the framework Na
+
, through electrostatic interactions and with a minor charge transfer. Increasing the number of SO
2
adsorbates, the Na
6
[AlSiO
4
]
6
sodalite framework shrinks first and then expands. Statistical thermodynamics analysis suggests that the capture reaches its saturation limit of four SO
2
molecules per Na
6
[AlSiO
4
]
6
formula (~300 mg/g) at room temperature and a low SO
2
partial pressure of 0.001 atm, indicating that dehydrated Na
6
[AlSiO
4
]
6
can be an efficient SO
2
sorbent even at its extremely low concentrations. Higher SO
2
partial pressures lead to a higher capture capacity. A low baking temperature of 100‐150°C can efficiently release the adsorbed SO
2
and hence restore the capture capacity of Na
6
[AlSiO
4
]
6
.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkEtLQzEQhYMoWKsbf0HWwq153Zi4K9WqUOyiuhK55DHXptxHSbKw_95Unc3hcOYMw4fQNSUzWuZ2ZxzMqGSMn6AJrWtaMU3lKZoQQlh1pxg5Rxcp7YqlWokJ-n6A7cFHk8HjV4Ml_ph3m7DGAn8Wk0ZvupABm4QN3sexDykMX3izxqyE0cKQcV_KMZjuHs9xG2LKZTEMLuw7SDhvIfajPwymDy6VBHxwOYzDJTprTZfg6l-n6H35-LZ4rlbrp5fFfFU5KmSujFZgiPagwHJmLSfeSVcrIpx2VgnSahCCck21BVBK65p4LYXz1MrWcT5FN393XRxTitA25bvexENDSXNk1hyZNb_M-A9ngV_0</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Wang, Yinglou</creator><creator>Jiang, Yong</creator><creator>Hu, Shuanglin</creator><creator>Peng, Sai</creator><creator>Xu, Canhui</creator><creator>Lu, Anxian</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8263-8547</orcidid><orcidid>https://orcid.org/0000-0001-9729-5500</orcidid></search><sort><creationdate>201906</creationdate><title>Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction</title><author>Wang, Yinglou ; Jiang, Yong ; Hu, Shuanglin ; Peng, Sai ; Xu, Canhui ; Lu, Anxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c146t-a98ea09de8eb32bb30dc6c5804c9cb840f9e4413919bee889950d964cd1b6fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yinglou</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Hu, Shuanglin</creatorcontrib><creatorcontrib>Peng, Sai</creatorcontrib><creatorcontrib>Xu, Canhui</creatorcontrib><creatorcontrib>Lu, Anxian</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yinglou</au><au>Jiang, Yong</au><au>Hu, Shuanglin</au><au>Peng, Sai</au><au>Xu, Canhui</au><au>Lu, Anxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2019-06</date><risdate>2019</risdate><volume>102</volume><issue>6</issue><spage>3663</spage><epage>3672</epage><pages>3663-3672</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The capture of sulfur dioxide (SO
2
) using dehydrated Na
6
[AlSiO
4
]
6
sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number of SO
2
adsorbates. Upon adsorption, the S atom of single SO
2
molecule tends to align to the framework O
2−
and the two oxygen atoms are oriented to the framework Na
+
, through electrostatic interactions and with a minor charge transfer. Increasing the number of SO
2
adsorbates, the Na
6
[AlSiO
4
]
6
sodalite framework shrinks first and then expands. Statistical thermodynamics analysis suggests that the capture reaches its saturation limit of four SO
2
molecules per Na
6
[AlSiO
4
]
6
formula (~300 mg/g) at room temperature and a low SO
2
partial pressure of 0.001 atm, indicating that dehydrated Na
6
[AlSiO
4
]
6
can be an efficient SO
2
sorbent even at its extremely low concentrations. Higher SO
2
partial pressures lead to a higher capture capacity. A low baking temperature of 100‐150°C can efficiently release the adsorbed SO
2
and hence restore the capture capacity of Na
6
[AlSiO
4
]
6
.</abstract><doi>10.1111/jace.16223</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8263-8547</orcidid><orcidid>https://orcid.org/0000-0001-9729-5500</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7820 |
ispartof | Journal of the American Ceramic Society, 2019-06, Vol.102 (6), p.3663-3672 |
issn | 0002-7820 1551-2916 |
language | eng |
recordid | cdi_crossref_primary_10_1111_jace_16223 |
source | Wiley Online Library Journals |
title | Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydrated%20Na%206%20%5BAlSiO%204%20%5D%206%20sodalite%20as%20a%20promising%20SO%202%20sorbent%20material:%20A%20first%20principles%20thermodynamics%20prediction&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Wang,%20Yinglou&rft.date=2019-06&rft.volume=102&rft.issue=6&rft.spage=3663&rft.epage=3672&rft.pages=3663-3672&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16223&rft_dat=%3Ccrossref%3E10_1111_jace_16223%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |