Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction

The capture of sulfur dioxide (SO 2 ) using dehydrated Na 6 [AlSiO 4 ] 6 sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2019-06, Vol.102 (6), p.3663-3672
Hauptverfasser: Wang, Yinglou, Jiang, Yong, Hu, Shuanglin, Peng, Sai, Xu, Canhui, Lu, Anxian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3672
container_issue 6
container_start_page 3663
container_title Journal of the American Ceramic Society
container_volume 102
creator Wang, Yinglou
Jiang, Yong
Hu, Shuanglin
Peng, Sai
Xu, Canhui
Lu, Anxian
description The capture of sulfur dioxide (SO 2 ) using dehydrated Na 6 [AlSiO 4 ] 6 sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number of SO 2 adsorbates. Upon adsorption, the S atom of single SO 2 molecule tends to align to the framework O 2− and the two oxygen atoms are oriented to the framework Na + , through electrostatic interactions and with a minor charge transfer. Increasing the number of SO 2 adsorbates, the Na 6 [AlSiO 4 ] 6 sodalite framework shrinks first and then expands. Statistical thermodynamics analysis suggests that the capture reaches its saturation limit of four SO 2 molecules per Na 6 [AlSiO 4 ] 6 formula (~300 mg/g) at room temperature and a low SO 2 partial pressure of 0.001 atm, indicating that dehydrated Na 6 [AlSiO 4 ] 6 can be an efficient SO 2 sorbent even at its extremely low concentrations. Higher SO 2 partial pressures lead to a higher capture capacity. A low baking temperature of 100‐150°C can efficiently release the adsorbed SO 2 and hence restore the capture capacity of Na 6 [AlSiO 4 ] 6 .
doi_str_mv 10.1111/jace.16223
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_jace_16223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_jace_16223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c146t-a98ea09de8eb32bb30dc6c5804c9cb840f9e4413919bee889950d964cd1b6fc33</originalsourceid><addsrcrecordid>eNotkEtLQzEQhYMoWKsbf0HWwq153Zi4K9WqUOyiuhK55DHXptxHSbKw_95Unc3hcOYMw4fQNSUzWuZ2ZxzMqGSMn6AJrWtaMU3lKZoQQlh1pxg5Rxcp7YqlWokJ-n6A7cFHk8HjV4Ml_ph3m7DGAn8Wk0ZvupABm4QN3sexDykMX3izxqyE0cKQcV_KMZjuHs9xG2LKZTEMLuw7SDhvIfajPwymDy6VBHxwOYzDJTprTZfg6l-n6H35-LZ4rlbrp5fFfFU5KmSujFZgiPagwHJmLSfeSVcrIpx2VgnSahCCck21BVBK65p4LYXz1MrWcT5FN393XRxTitA25bvexENDSXNk1hyZNb_M-A9ngV_0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction</title><source>Wiley Online Library Journals</source><creator>Wang, Yinglou ; Jiang, Yong ; Hu, Shuanglin ; Peng, Sai ; Xu, Canhui ; Lu, Anxian</creator><creatorcontrib>Wang, Yinglou ; Jiang, Yong ; Hu, Shuanglin ; Peng, Sai ; Xu, Canhui ; Lu, Anxian</creatorcontrib><description>The capture of sulfur dioxide (SO 2 ) using dehydrated Na 6 [AlSiO 4 ] 6 sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number of SO 2 adsorbates. Upon adsorption, the S atom of single SO 2 molecule tends to align to the framework O 2− and the two oxygen atoms are oriented to the framework Na + , through electrostatic interactions and with a minor charge transfer. Increasing the number of SO 2 adsorbates, the Na 6 [AlSiO 4 ] 6 sodalite framework shrinks first and then expands. Statistical thermodynamics analysis suggests that the capture reaches its saturation limit of four SO 2 molecules per Na 6 [AlSiO 4 ] 6 formula (~300 mg/g) at room temperature and a low SO 2 partial pressure of 0.001 atm, indicating that dehydrated Na 6 [AlSiO 4 ] 6 can be an efficient SO 2 sorbent even at its extremely low concentrations. Higher SO 2 partial pressures lead to a higher capture capacity. A low baking temperature of 100‐150°C can efficiently release the adsorbed SO 2 and hence restore the capture capacity of Na 6 [AlSiO 4 ] 6 .</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.16223</identifier><language>eng</language><ispartof>Journal of the American Ceramic Society, 2019-06, Vol.102 (6), p.3663-3672</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c146t-a98ea09de8eb32bb30dc6c5804c9cb840f9e4413919bee889950d964cd1b6fc33</citedby><cites>FETCH-LOGICAL-c146t-a98ea09de8eb32bb30dc6c5804c9cb840f9e4413919bee889950d964cd1b6fc33</cites><orcidid>0000-0002-8263-8547 ; 0000-0001-9729-5500</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yinglou</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Hu, Shuanglin</creatorcontrib><creatorcontrib>Peng, Sai</creatorcontrib><creatorcontrib>Xu, Canhui</creatorcontrib><creatorcontrib>Lu, Anxian</creatorcontrib><title>Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction</title><title>Journal of the American Ceramic Society</title><description>The capture of sulfur dioxide (SO 2 ) using dehydrated Na 6 [AlSiO 4 ] 6 sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number of SO 2 adsorbates. Upon adsorption, the S atom of single SO 2 molecule tends to align to the framework O 2− and the two oxygen atoms are oriented to the framework Na + , through electrostatic interactions and with a minor charge transfer. Increasing the number of SO 2 adsorbates, the Na 6 [AlSiO 4 ] 6 sodalite framework shrinks first and then expands. Statistical thermodynamics analysis suggests that the capture reaches its saturation limit of four SO 2 molecules per Na 6 [AlSiO 4 ] 6 formula (~300 mg/g) at room temperature and a low SO 2 partial pressure of 0.001 atm, indicating that dehydrated Na 6 [AlSiO 4 ] 6 can be an efficient SO 2 sorbent even at its extremely low concentrations. Higher SO 2 partial pressures lead to a higher capture capacity. A low baking temperature of 100‐150°C can efficiently release the adsorbed SO 2 and hence restore the capture capacity of Na 6 [AlSiO 4 ] 6 .</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkEtLQzEQhYMoWKsbf0HWwq153Zi4K9WqUOyiuhK55DHXptxHSbKw_95Unc3hcOYMw4fQNSUzWuZ2ZxzMqGSMn6AJrWtaMU3lKZoQQlh1pxg5Rxcp7YqlWokJ-n6A7cFHk8HjV4Ml_ph3m7DGAn8Wk0ZvupABm4QN3sexDykMX3izxqyE0cKQcV_KMZjuHs9xG2LKZTEMLuw7SDhvIfajPwymDy6VBHxwOYzDJTprTZfg6l-n6H35-LZ4rlbrp5fFfFU5KmSujFZgiPagwHJmLSfeSVcrIpx2VgnSahCCck21BVBK65p4LYXz1MrWcT5FN393XRxTitA25bvexENDSXNk1hyZNb_M-A9ngV_0</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Wang, Yinglou</creator><creator>Jiang, Yong</creator><creator>Hu, Shuanglin</creator><creator>Peng, Sai</creator><creator>Xu, Canhui</creator><creator>Lu, Anxian</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8263-8547</orcidid><orcidid>https://orcid.org/0000-0001-9729-5500</orcidid></search><sort><creationdate>201906</creationdate><title>Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction</title><author>Wang, Yinglou ; Jiang, Yong ; Hu, Shuanglin ; Peng, Sai ; Xu, Canhui ; Lu, Anxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c146t-a98ea09de8eb32bb30dc6c5804c9cb840f9e4413919bee889950d964cd1b6fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yinglou</creatorcontrib><creatorcontrib>Jiang, Yong</creatorcontrib><creatorcontrib>Hu, Shuanglin</creatorcontrib><creatorcontrib>Peng, Sai</creatorcontrib><creatorcontrib>Xu, Canhui</creatorcontrib><creatorcontrib>Lu, Anxian</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yinglou</au><au>Jiang, Yong</au><au>Hu, Shuanglin</au><au>Peng, Sai</au><au>Xu, Canhui</au><au>Lu, Anxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2019-06</date><risdate>2019</risdate><volume>102</volume><issue>6</issue><spage>3663</spage><epage>3672</epage><pages>3663-3672</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>The capture of sulfur dioxide (SO 2 ) using dehydrated Na 6 [AlSiO 4 ] 6 sodalite was investigated using the first principles density functional theory calculations and thermodynamics analysis. The adsorption geometries, energetics, and electronic structures were predicted with the increasing number of SO 2 adsorbates. Upon adsorption, the S atom of single SO 2 molecule tends to align to the framework O 2− and the two oxygen atoms are oriented to the framework Na + , through electrostatic interactions and with a minor charge transfer. Increasing the number of SO 2 adsorbates, the Na 6 [AlSiO 4 ] 6 sodalite framework shrinks first and then expands. Statistical thermodynamics analysis suggests that the capture reaches its saturation limit of four SO 2 molecules per Na 6 [AlSiO 4 ] 6 formula (~300 mg/g) at room temperature and a low SO 2 partial pressure of 0.001 atm, indicating that dehydrated Na 6 [AlSiO 4 ] 6 can be an efficient SO 2 sorbent even at its extremely low concentrations. Higher SO 2 partial pressures lead to a higher capture capacity. A low baking temperature of 100‐150°C can efficiently release the adsorbed SO 2 and hence restore the capture capacity of Na 6 [AlSiO 4 ] 6 .</abstract><doi>10.1111/jace.16223</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8263-8547</orcidid><orcidid>https://orcid.org/0000-0001-9729-5500</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2019-06, Vol.102 (6), p.3663-3672
issn 0002-7820
1551-2916
language eng
recordid cdi_crossref_primary_10_1111_jace_16223
source Wiley Online Library Journals
title Dehydrated Na 6 [AlSiO 4 ] 6 sodalite as a promising SO 2 sorbent material: A first principles thermodynamics prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A55%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dehydrated%20Na%206%20%5BAlSiO%204%20%5D%206%20sodalite%20as%20a%20promising%20SO%202%20sorbent%20material:%20A%20first%20principles%20thermodynamics%20prediction&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Wang,%20Yinglou&rft.date=2019-06&rft.volume=102&rft.issue=6&rft.spage=3663&rft.epage=3672&rft.pages=3663-3672&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.16223&rft_dat=%3Ccrossref%3E10_1111_jace_16223%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true