M 2 YSi (M=Rh, Ir): Theoretically predicted damage‐tolerant MAX phase‐like layered silicides

Searching for layered MAX phase‐like materials with properties of both ceramics and metals is a topic in its infancy. Herein, through a combination of crystal structure, electronic structure, chemical bonding, and elastic property investigations, we report two MAX phase‐like layered materials Rh 2 Y...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2018-01, Vol.101 (1), p.365-375
Hauptverfasser: Zhou, Yanchun, Xiang, Huimin, Dai, Fuzhi, Feng, Zhihai
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 1
container_start_page 365
container_title Journal of the American Ceramic Society
container_volume 101
creator Zhou, Yanchun
Xiang, Huimin
Dai, Fuzhi
Feng, Zhihai
description Searching for layered MAX phase‐like materials with properties of both ceramics and metals is a topic in its infancy. Herein, through a combination of crystal structure, electronic structure, chemical bonding, and elastic property investigations, we report two MAX phase‐like layered materials Rh 2 YSi and Ir 2 YSi. Rh 2 YSi and Ir 2 YSi have bulk modulus B of 150 and 185 GPa, respectively, which are comparable to the typical MAX phases like Ti 2 AlC, Ti 3 AlC 2 , and Ti 3 SiC 2 , but much lower shear modulus G (82 and 97 GPa for Rh 2 YSi and Ir 2 YSi, respectively) than MAX phases. The high stiffness is due to the presence of rigid Si2–M–Si3–M (M = Ir, Rh) units, while the low shear deformation resistance is due to the presence of metallic bonds and the weak bonds that link the rigid Si2–M–Si3–M (M = Ir, Rh) units. Based on the low shear deformation resistance and low Pugh's ratio, Rh 2 YSi and Ir 2 YSi are predicted as damage‐tolerant silicides and promising water vapor‐resistant interphase materials for SiC f /SiC composites if yttria or yttrium silicates are formed to protect the SiC fibers in oxygen containing environments. The possible slip systems are {0001} < > and { } for both Rh 2 YSi and Ir 2 YSi.
doi_str_mv 10.1111/jace.15186
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_jace_15186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_jace_15186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c766-aec20f78d2adfe7df578c4b936bd5c2c31cb1ba6c289c22a5b8071f262374e6b3</originalsourceid><addsrcrecordid>eNotkM9OAjEYxBujiYhefIIe1bDYdtm2a-KBEP-QQEyUg57Wb79-K8UipN0LNx_BZ_RJBHUuk5lM5vBj7FSKvtzqcgFIfVlIq_dYRxaFzFQp9T7rCCFUZqwSh-wopcU2ytIOOux1yhV_efL8bHr9OO_xcTy_4rM5rSK1HiGEDV9Hch5bctzBEt7o-_OrXQWK8NHy6fCZr-eQdmXw78QDbGi758kHj95ROmYHDYREJ__eZbPbm9noPps83I1Hw0mGRusMCJVojHUKXEPGNYWxOKjLXNeuQIW5xFrWoFHZEpWCorbCyEZplZsB6Trvsou_W4yrlCI11Tr6JcRNJUW1Q1Pt0FS_aPIfq_dYyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>M 2 YSi (M=Rh, Ir): Theoretically predicted damage‐tolerant MAX phase‐like layered silicides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Yanchun ; Xiang, Huimin ; Dai, Fuzhi ; Feng, Zhihai</creator><creatorcontrib>Zhou, Yanchun ; Xiang, Huimin ; Dai, Fuzhi ; Feng, Zhihai</creatorcontrib><description>Searching for layered MAX phase‐like materials with properties of both ceramics and metals is a topic in its infancy. Herein, through a combination of crystal structure, electronic structure, chemical bonding, and elastic property investigations, we report two MAX phase‐like layered materials Rh 2 YSi and Ir 2 YSi. Rh 2 YSi and Ir 2 YSi have bulk modulus B of 150 and 185 GPa, respectively, which are comparable to the typical MAX phases like Ti 2 AlC, Ti 3 AlC 2 , and Ti 3 SiC 2 , but much lower shear modulus G (82 and 97 GPa for Rh 2 YSi and Ir 2 YSi, respectively) than MAX phases. The high stiffness is due to the presence of rigid Si2–M–Si3–M (M = Ir, Rh) units, while the low shear deformation resistance is due to the presence of metallic bonds and the weak bonds that link the rigid Si2–M–Si3–M (M = Ir, Rh) units. Based on the low shear deformation resistance and low Pugh's ratio, Rh 2 YSi and Ir 2 YSi are predicted as damage‐tolerant silicides and promising water vapor‐resistant interphase materials for SiC f /SiC composites if yttria or yttrium silicates are formed to protect the SiC fibers in oxygen containing environments. The possible slip systems are {0001} &lt; &gt; and { } for both Rh 2 YSi and Ir 2 YSi.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.15186</identifier><language>eng</language><ispartof>Journal of the American Ceramic Society, 2018-01, Vol.101 (1), p.365-375</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c766-aec20f78d2adfe7df578c4b936bd5c2c31cb1ba6c289c22a5b8071f262374e6b3</citedby><cites>FETCH-LOGICAL-c766-aec20f78d2adfe7df578c4b936bd5c2c31cb1ba6c289c22a5b8071f262374e6b3</cites><orcidid>0000-0002-4830-4287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Yanchun</creatorcontrib><creatorcontrib>Xiang, Huimin</creatorcontrib><creatorcontrib>Dai, Fuzhi</creatorcontrib><creatorcontrib>Feng, Zhihai</creatorcontrib><title>M 2 YSi (M=Rh, Ir): Theoretically predicted damage‐tolerant MAX phase‐like layered silicides</title><title>Journal of the American Ceramic Society</title><description>Searching for layered MAX phase‐like materials with properties of both ceramics and metals is a topic in its infancy. Herein, through a combination of crystal structure, electronic structure, chemical bonding, and elastic property investigations, we report two MAX phase‐like layered materials Rh 2 YSi and Ir 2 YSi. Rh 2 YSi and Ir 2 YSi have bulk modulus B of 150 and 185 GPa, respectively, which are comparable to the typical MAX phases like Ti 2 AlC, Ti 3 AlC 2 , and Ti 3 SiC 2 , but much lower shear modulus G (82 and 97 GPa for Rh 2 YSi and Ir 2 YSi, respectively) than MAX phases. The high stiffness is due to the presence of rigid Si2–M–Si3–M (M = Ir, Rh) units, while the low shear deformation resistance is due to the presence of metallic bonds and the weak bonds that link the rigid Si2–M–Si3–M (M = Ir, Rh) units. Based on the low shear deformation resistance and low Pugh's ratio, Rh 2 YSi and Ir 2 YSi are predicted as damage‐tolerant silicides and promising water vapor‐resistant interphase materials for SiC f /SiC composites if yttria or yttrium silicates are formed to protect the SiC fibers in oxygen containing environments. The possible slip systems are {0001} &lt; &gt; and { } for both Rh 2 YSi and Ir 2 YSi.</description><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkM9OAjEYxBujiYhefIIe1bDYdtm2a-KBEP-QQEyUg57Wb79-K8UipN0LNx_BZ_RJBHUuk5lM5vBj7FSKvtzqcgFIfVlIq_dYRxaFzFQp9T7rCCFUZqwSh-wopcU2ytIOOux1yhV_efL8bHr9OO_xcTy_4rM5rSK1HiGEDV9Hch5bctzBEt7o-_OrXQWK8NHy6fCZr-eQdmXw78QDbGi758kHj95ROmYHDYREJ__eZbPbm9noPps83I1Hw0mGRusMCJVojHUKXEPGNYWxOKjLXNeuQIW5xFrWoFHZEpWCorbCyEZplZsB6Trvsou_W4yrlCI11Tr6JcRNJUW1Q1Pt0FS_aPIfq_dYyA</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zhou, Yanchun</creator><creator>Xiang, Huimin</creator><creator>Dai, Fuzhi</creator><creator>Feng, Zhihai</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4830-4287</orcidid></search><sort><creationdate>201801</creationdate><title>M 2 YSi (M=Rh, Ir): Theoretically predicted damage‐tolerant MAX phase‐like layered silicides</title><author>Zhou, Yanchun ; Xiang, Huimin ; Dai, Fuzhi ; Feng, Zhihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c766-aec20f78d2adfe7df578c4b936bd5c2c31cb1ba6c289c22a5b8071f262374e6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yanchun</creatorcontrib><creatorcontrib>Xiang, Huimin</creatorcontrib><creatorcontrib>Dai, Fuzhi</creatorcontrib><creatorcontrib>Feng, Zhihai</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yanchun</au><au>Xiang, Huimin</au><au>Dai, Fuzhi</au><au>Feng, Zhihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>M 2 YSi (M=Rh, Ir): Theoretically predicted damage‐tolerant MAX phase‐like layered silicides</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2018-01</date><risdate>2018</risdate><volume>101</volume><issue>1</issue><spage>365</spage><epage>375</epage><pages>365-375</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Searching for layered MAX phase‐like materials with properties of both ceramics and metals is a topic in its infancy. Herein, through a combination of crystal structure, electronic structure, chemical bonding, and elastic property investigations, we report two MAX phase‐like layered materials Rh 2 YSi and Ir 2 YSi. Rh 2 YSi and Ir 2 YSi have bulk modulus B of 150 and 185 GPa, respectively, which are comparable to the typical MAX phases like Ti 2 AlC, Ti 3 AlC 2 , and Ti 3 SiC 2 , but much lower shear modulus G (82 and 97 GPa for Rh 2 YSi and Ir 2 YSi, respectively) than MAX phases. The high stiffness is due to the presence of rigid Si2–M–Si3–M (M = Ir, Rh) units, while the low shear deformation resistance is due to the presence of metallic bonds and the weak bonds that link the rigid Si2–M–Si3–M (M = Ir, Rh) units. Based on the low shear deformation resistance and low Pugh's ratio, Rh 2 YSi and Ir 2 YSi are predicted as damage‐tolerant silicides and promising water vapor‐resistant interphase materials for SiC f /SiC composites if yttria or yttrium silicates are formed to protect the SiC fibers in oxygen containing environments. The possible slip systems are {0001} &lt; &gt; and { } for both Rh 2 YSi and Ir 2 YSi.</abstract><doi>10.1111/jace.15186</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4830-4287</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2018-01, Vol.101 (1), p.365-375
issn 0002-7820
1551-2916
language eng
recordid cdi_crossref_primary_10_1111_jace_15186
source Wiley Online Library Journals Frontfile Complete
title M 2 YSi (M=Rh, Ir): Theoretically predicted damage‐tolerant MAX phase‐like layered silicides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A25%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M%202%20YSi%20(M=Rh,%20Ir):%20Theoretically%20predicted%20damage%E2%80%90tolerant%20MAX%20phase%E2%80%90like%20layered%20silicides&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Zhou,%20Yanchun&rft.date=2018-01&rft.volume=101&rft.issue=1&rft.spage=365&rft.epage=375&rft.pages=365-375&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/10.1111/jace.15186&rft_dat=%3Ccrossref%3E10_1111_jace_15186%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true