The Raise Regression: Justification, Properties and Application

Multicollinearity results in inflation in the variance of the ordinary least squares estimators due to the correlation between two or more independent variables (including the constant term). A widely applied solution is to estimate with penalised estimators such as the ridge estimator, which trade...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International statistical review 2024-05
Hauptverfasser: Salmerón‐Gómez, Román, García‐García, Catalina B., García‐Pérez, José
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title International statistical review
container_volume
creator Salmerón‐Gómez, Román
García‐García, Catalina B.
García‐Pérez, José
description Multicollinearity results in inflation in the variance of the ordinary least squares estimators due to the correlation between two or more independent variables (including the constant term). A widely applied solution is to estimate with penalised estimators such as the ridge estimator, which trade off some bias in the estimators to gain a reduction in the variance of these estimators. Although the variance diminishes with these procedures, all seem to indicate that the inference and goodness of fit are controversial. Alternatively, the raise regression allows mitigation of the problems associated with multicollinearity without the loss of inference or the coefficient of determination. This paper completely formalises the raise estimator. For the first time, the norm of the estimator, the behaviour of the individual and joint significance, the behaviour of the mean squared error and the coefficient of variation are analysed. We also present the generalisation of the estimation and the relation between the raise and the residualisation estimators. To have a better understanding of raise regression, previous contributions are also summarised: its mean squared error, the variance inflation factor, the condition number, adequate selection of the variable to be raised, the successive raising, and the relation between the raise and the ridge estimator. The usefulness of the raise regression as an alternative to mitigate multicollinearity is illustrated with two empirical applications.
doi_str_mv 10.1111/insr.12575
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_insr_12575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_insr_12575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c190t-2b3ace25607761d059b1884c6c575d957c1d3ee6ece8c4d438ad758662851b6b3</originalsourceid><addsrcrecordid>eNotj0tLw0AUhQdRMFY3_oKsxbRzZzKPuJFSfFQKitR1mMzc6EhNwty48N-bas_iHA4HLvdj7BL4HCYtYkdpDkIZdcQyMAoKZYU8ZhmXXBfGyPKUnRF9cs6lsGXGbrcfmL-6SJPje0Ki2Hc3-dM3jbGN3o1Tvc5fUj9gGiNS7rqQL4dhd9jO2UnrdoQXh5yxt_u77eqx2Dw_rFfLTeGh4mMhGuk8CqW5MRoCV1UD1pZe--nVUCnjIUhEjR6tL0MprQtGWa2FVdDoRs7Y1f9dn3qihG09pPjl0k8NvN6j13v0-g9d_gLisUxX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Raise Regression: Justification, Properties and Application</title><source>Wiley Journals</source><creator>Salmerón‐Gómez, Román ; García‐García, Catalina B. ; García‐Pérez, José</creator><creatorcontrib>Salmerón‐Gómez, Román ; García‐García, Catalina B. ; García‐Pérez, José</creatorcontrib><description>Multicollinearity results in inflation in the variance of the ordinary least squares estimators due to the correlation between two or more independent variables (including the constant term). A widely applied solution is to estimate with penalised estimators such as the ridge estimator, which trade off some bias in the estimators to gain a reduction in the variance of these estimators. Although the variance diminishes with these procedures, all seem to indicate that the inference and goodness of fit are controversial. Alternatively, the raise regression allows mitigation of the problems associated with multicollinearity without the loss of inference or the coefficient of determination. This paper completely formalises the raise estimator. For the first time, the norm of the estimator, the behaviour of the individual and joint significance, the behaviour of the mean squared error and the coefficient of variation are analysed. We also present the generalisation of the estimation and the relation between the raise and the residualisation estimators. To have a better understanding of raise regression, previous contributions are also summarised: its mean squared error, the variance inflation factor, the condition number, adequate selection of the variable to be raised, the successive raising, and the relation between the raise and the ridge estimator. The usefulness of the raise regression as an alternative to mitigate multicollinearity is illustrated with two empirical applications.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/insr.12575</identifier><language>eng</language><ispartof>International statistical review, 2024-05</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c190t-2b3ace25607761d059b1884c6c575d957c1d3ee6ece8c4d438ad758662851b6b3</cites><orcidid>0000-0003-1622-3877 ; 0000-0003-2589-4058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Salmerón‐Gómez, Román</creatorcontrib><creatorcontrib>García‐García, Catalina B.</creatorcontrib><creatorcontrib>García‐Pérez, José</creatorcontrib><title>The Raise Regression: Justification, Properties and Application</title><title>International statistical review</title><description>Multicollinearity results in inflation in the variance of the ordinary least squares estimators due to the correlation between two or more independent variables (including the constant term). A widely applied solution is to estimate with penalised estimators such as the ridge estimator, which trade off some bias in the estimators to gain a reduction in the variance of these estimators. Although the variance diminishes with these procedures, all seem to indicate that the inference and goodness of fit are controversial. Alternatively, the raise regression allows mitigation of the problems associated with multicollinearity without the loss of inference or the coefficient of determination. This paper completely formalises the raise estimator. For the first time, the norm of the estimator, the behaviour of the individual and joint significance, the behaviour of the mean squared error and the coefficient of variation are analysed. We also present the generalisation of the estimation and the relation between the raise and the residualisation estimators. To have a better understanding of raise regression, previous contributions are also summarised: its mean squared error, the variance inflation factor, the condition number, adequate selection of the variable to be raised, the successive raising, and the relation between the raise and the ridge estimator. The usefulness of the raise regression as an alternative to mitigate multicollinearity is illustrated with two empirical applications.</description><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotj0tLw0AUhQdRMFY3_oKsxbRzZzKPuJFSfFQKitR1mMzc6EhNwty48N-bas_iHA4HLvdj7BL4HCYtYkdpDkIZdcQyMAoKZYU8ZhmXXBfGyPKUnRF9cs6lsGXGbrcfmL-6SJPje0Ki2Hc3-dM3jbGN3o1Tvc5fUj9gGiNS7rqQL4dhd9jO2UnrdoQXh5yxt_u77eqx2Dw_rFfLTeGh4mMhGuk8CqW5MRoCV1UD1pZe--nVUCnjIUhEjR6tL0MprQtGWa2FVdDoRs7Y1f9dn3qihG09pPjl0k8NvN6j13v0-g9d_gLisUxX</recordid><startdate>20240502</startdate><enddate>20240502</enddate><creator>Salmerón‐Gómez, Román</creator><creator>García‐García, Catalina B.</creator><creator>García‐Pérez, José</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1622-3877</orcidid><orcidid>https://orcid.org/0000-0003-2589-4058</orcidid></search><sort><creationdate>20240502</creationdate><title>The Raise Regression: Justification, Properties and Application</title><author>Salmerón‐Gómez, Román ; García‐García, Catalina B. ; García‐Pérez, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c190t-2b3ace25607761d059b1884c6c575d957c1d3ee6ece8c4d438ad758662851b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salmerón‐Gómez, Román</creatorcontrib><creatorcontrib>García‐García, Catalina B.</creatorcontrib><creatorcontrib>García‐Pérez, José</creatorcontrib><collection>CrossRef</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salmerón‐Gómez, Román</au><au>García‐García, Catalina B.</au><au>García‐Pérez, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Raise Regression: Justification, Properties and Application</atitle><jtitle>International statistical review</jtitle><date>2024-05-02</date><risdate>2024</risdate><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>Multicollinearity results in inflation in the variance of the ordinary least squares estimators due to the correlation between two or more independent variables (including the constant term). A widely applied solution is to estimate with penalised estimators such as the ridge estimator, which trade off some bias in the estimators to gain a reduction in the variance of these estimators. Although the variance diminishes with these procedures, all seem to indicate that the inference and goodness of fit are controversial. Alternatively, the raise regression allows mitigation of the problems associated with multicollinearity without the loss of inference or the coefficient of determination. This paper completely formalises the raise estimator. For the first time, the norm of the estimator, the behaviour of the individual and joint significance, the behaviour of the mean squared error and the coefficient of variation are analysed. We also present the generalisation of the estimation and the relation between the raise and the residualisation estimators. To have a better understanding of raise regression, previous contributions are also summarised: its mean squared error, the variance inflation factor, the condition number, adequate selection of the variable to be raised, the successive raising, and the relation between the raise and the ridge estimator. The usefulness of the raise regression as an alternative to mitigate multicollinearity is illustrated with two empirical applications.</abstract><doi>10.1111/insr.12575</doi><orcidid>https://orcid.org/0000-0003-1622-3877</orcidid><orcidid>https://orcid.org/0000-0003-2589-4058</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-7734
ispartof International statistical review, 2024-05
issn 0306-7734
1751-5823
language eng
recordid cdi_crossref_primary_10_1111_insr_12575
source Wiley Journals
title The Raise Regression: Justification, Properties and Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A42%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Raise%20Regression:%20Justification,%20Properties%20and%20Application&rft.jtitle=International%20statistical%20review&rft.au=Salmer%C3%B3n%E2%80%90G%C3%B3mez,%20Rom%C3%A1n&rft.date=2024-05-02&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/insr.12575&rft_dat=%3Ccrossref%3E10_1111_insr_12575%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true