Multicomponent oxide composites for carriers in catalytic applications
Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surfac...
Gespeichert in:
Veröffentlicht in: | International journal of applied ceramic technology 2021-09, Vol.18 (5), p.1607-1622 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1622 |
---|---|
container_issue | 5 |
container_start_page | 1607 |
container_title | International journal of applied ceramic technology |
container_volume | 18 |
creator | Vora, Aliakbar M. Yadav, Ran Bahadur Basrur, Arun G. |
description | Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surface area, porosity, acidity, hydrothermal stability, and oxygen storage capacity (OSC) differently. Interaction effects between components further influence these properties resulting in unexpected trends. Alumina and magnesia form solid solutions with zirconia until 650℃. Magnesia imparts better hydrothermal stability to zirconia. Aluminum and magnesium form MgAl2O4 spinel in ternary composites. Specific surface area varies linearly with alumina content. Alumina influences porosity, whereas magnesia influences pore diameter. The composites are mesoporous. Only binary composites present unimodal, pore size distribution. Composites containing alumina present type H2 isotherms while the remaining composites present H3 type isotherms. OSC increases over ZrO2/CeO2 5.7 to 15.3 molar. Magnesia and alumina affect microstructure and hydrothermal stability in contrasting ways. Thermogravimetry indicates that ternary composites of zirconia with alumina or magnesia form through oxolation. Surface hydroxyls with varying acidity are seen by FTIR in as synthesized samples. Magnesia and zirconia influence acidity in opposite ways, which impacts deactivation in the decomposition of 2‐methyl‐3‐butyn‐2‐ol. |
doi_str_mv | 10.1111/ijac.13816 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_ijac_13816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558430944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2316-22ffa80cb1aae378a578041c900eb66e45a6d4bf3314d5efb7d97224ba2b0cf3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4QkicUNK8c_aSY5VRaGoiEsP3CzHsSVHaRzsVNC3x204s5edkb7ZlQahe4IXJM2Ta5VeEFYScYFmpADIC8D0MmkOIudAP6_RTYwtxgwYEzO0fj90o9N-P_je9GPmf1xjsrOPbjQxsz5kWoXgTIiZ65MeVXdMkUwNQ-eSdb6Pt-jKqi6au789R7v18271mm8_Xjar5TbXlBGRU2qtKrGuiVKGFaXiRYmB6ApjUwthgCvRQG0ZI9BwY-uiqQpKoVa0xtqyOXqYzg7Bfx1MHGXrD6FPHyXlvASGK4BEPU6UDj7GYKwcgturcJQEy1NN8lSTPNeUYDLB364zx39IuXlbrqbML0a_a0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558430944</pqid></control><display><type>article</type><title>Multicomponent oxide composites for carriers in catalytic applications</title><source>Wiley Online Library All Journals</source><creator>Vora, Aliakbar M. ; Yadav, Ran Bahadur ; Basrur, Arun G.</creator><creatorcontrib>Vora, Aliakbar M. ; Yadav, Ran Bahadur ; Basrur, Arun G.</creatorcontrib><description>Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surface area, porosity, acidity, hydrothermal stability, and oxygen storage capacity (OSC) differently. Interaction effects between components further influence these properties resulting in unexpected trends. Alumina and magnesia form solid solutions with zirconia until 650℃. Magnesia imparts better hydrothermal stability to zirconia. Aluminum and magnesium form MgAl2O4 spinel in ternary composites. Specific surface area varies linearly with alumina content. Alumina influences porosity, whereas magnesia influences pore diameter. The composites are mesoporous. Only binary composites present unimodal, pore size distribution. Composites containing alumina present type H2 isotherms while the remaining composites present H3 type isotherms. OSC increases over ZrO2/CeO2 5.7 to 15.3 molar. Magnesia and alumina affect microstructure and hydrothermal stability in contrasting ways. Thermogravimetry indicates that ternary composites of zirconia with alumina or magnesia form through oxolation. Surface hydroxyls with varying acidity are seen by FTIR in as synthesized samples. Magnesia and zirconia influence acidity in opposite ways, which impacts deactivation in the decomposition of 2‐methyl‐3‐butyn‐2‐ol.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.13816</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>acidity ; Alumina ; Aluminum ; Aluminum oxide ; Cerium oxides ; Composite materials ; Ethanol ; hydrothermal stability ; Influence ; Isotherms ; Magnesium ; multicomponent metal oxides ; OSC ; Pore size distribution ; Porosity ; quaternary composites ; Reforming ; RE‐alumina‐magnesia‐zirconia ; solid solution ; Solid solutions ; Specific surface ; Storage capacity ; Surface area ; Surface stability ; Thermogravimetry ; Zirconium dioxide</subject><ispartof>International journal of applied ceramic technology, 2021-09, Vol.18 (5), p.1607-1622</ispartof><rights>2021 The American Ceramic Society</rights><rights>Copyright © 2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2316-22ffa80cb1aae378a578041c900eb66e45a6d4bf3314d5efb7d97224ba2b0cf3</citedby><cites>FETCH-LOGICAL-c2316-22ffa80cb1aae378a578041c900eb66e45a6d4bf3314d5efb7d97224ba2b0cf3</cites><orcidid>0000-0003-2438-0063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.13816$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.13816$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Vora, Aliakbar M.</creatorcontrib><creatorcontrib>Yadav, Ran Bahadur</creatorcontrib><creatorcontrib>Basrur, Arun G.</creatorcontrib><title>Multicomponent oxide composites for carriers in catalytic applications</title><title>International journal of applied ceramic technology</title><description>Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surface area, porosity, acidity, hydrothermal stability, and oxygen storage capacity (OSC) differently. Interaction effects between components further influence these properties resulting in unexpected trends. Alumina and magnesia form solid solutions with zirconia until 650℃. Magnesia imparts better hydrothermal stability to zirconia. Aluminum and magnesium form MgAl2O4 spinel in ternary composites. Specific surface area varies linearly with alumina content. Alumina influences porosity, whereas magnesia influences pore diameter. The composites are mesoporous. Only binary composites present unimodal, pore size distribution. Composites containing alumina present type H2 isotherms while the remaining composites present H3 type isotherms. OSC increases over ZrO2/CeO2 5.7 to 15.3 molar. Magnesia and alumina affect microstructure and hydrothermal stability in contrasting ways. Thermogravimetry indicates that ternary composites of zirconia with alumina or magnesia form through oxolation. Surface hydroxyls with varying acidity are seen by FTIR in as synthesized samples. Magnesia and zirconia influence acidity in opposite ways, which impacts deactivation in the decomposition of 2‐methyl‐3‐butyn‐2‐ol.</description><subject>acidity</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Cerium oxides</subject><subject>Composite materials</subject><subject>Ethanol</subject><subject>hydrothermal stability</subject><subject>Influence</subject><subject>Isotherms</subject><subject>Magnesium</subject><subject>multicomponent metal oxides</subject><subject>OSC</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>quaternary composites</subject><subject>Reforming</subject><subject>RE‐alumina‐magnesia‐zirconia</subject><subject>solid solution</subject><subject>Solid solutions</subject><subject>Specific surface</subject><subject>Storage capacity</subject><subject>Surface area</subject><subject>Surface stability</subject><subject>Thermogravimetry</subject><subject>Zirconium dioxide</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4QkicUNK8c_aSY5VRaGoiEsP3CzHsSVHaRzsVNC3x204s5edkb7ZlQahe4IXJM2Ta5VeEFYScYFmpADIC8D0MmkOIudAP6_RTYwtxgwYEzO0fj90o9N-P_je9GPmf1xjsrOPbjQxsz5kWoXgTIiZ65MeVXdMkUwNQ-eSdb6Pt-jKqi6au789R7v18271mm8_Xjar5TbXlBGRU2qtKrGuiVKGFaXiRYmB6ApjUwthgCvRQG0ZI9BwY-uiqQpKoVa0xtqyOXqYzg7Bfx1MHGXrD6FPHyXlvASGK4BEPU6UDj7GYKwcgturcJQEy1NN8lSTPNeUYDLB364zx39IuXlbrqbML0a_a0w</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Vora, Aliakbar M.</creator><creator>Yadav, Ran Bahadur</creator><creator>Basrur, Arun G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2438-0063</orcidid></search><sort><creationdate>202109</creationdate><title>Multicomponent oxide composites for carriers in catalytic applications</title><author>Vora, Aliakbar M. ; Yadav, Ran Bahadur ; Basrur, Arun G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2316-22ffa80cb1aae378a578041c900eb66e45a6d4bf3314d5efb7d97224ba2b0cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acidity</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Cerium oxides</topic><topic>Composite materials</topic><topic>Ethanol</topic><topic>hydrothermal stability</topic><topic>Influence</topic><topic>Isotherms</topic><topic>Magnesium</topic><topic>multicomponent metal oxides</topic><topic>OSC</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>quaternary composites</topic><topic>Reforming</topic><topic>RE‐alumina‐magnesia‐zirconia</topic><topic>solid solution</topic><topic>Solid solutions</topic><topic>Specific surface</topic><topic>Storage capacity</topic><topic>Surface area</topic><topic>Surface stability</topic><topic>Thermogravimetry</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vora, Aliakbar M.</creatorcontrib><creatorcontrib>Yadav, Ran Bahadur</creatorcontrib><creatorcontrib>Basrur, Arun G.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vora, Aliakbar M.</au><au>Yadav, Ran Bahadur</au><au>Basrur, Arun G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent oxide composites for carriers in catalytic applications</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2021-09</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>1607</spage><epage>1622</epage><pages>1607-1622</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surface area, porosity, acidity, hydrothermal stability, and oxygen storage capacity (OSC) differently. Interaction effects between components further influence these properties resulting in unexpected trends. Alumina and magnesia form solid solutions with zirconia until 650℃. Magnesia imparts better hydrothermal stability to zirconia. Aluminum and magnesium form MgAl2O4 spinel in ternary composites. Specific surface area varies linearly with alumina content. Alumina influences porosity, whereas magnesia influences pore diameter. The composites are mesoporous. Only binary composites present unimodal, pore size distribution. Composites containing alumina present type H2 isotherms while the remaining composites present H3 type isotherms. OSC increases over ZrO2/CeO2 5.7 to 15.3 molar. Magnesia and alumina affect microstructure and hydrothermal stability in contrasting ways. Thermogravimetry indicates that ternary composites of zirconia with alumina or magnesia form through oxolation. Surface hydroxyls with varying acidity are seen by FTIR in as synthesized samples. Magnesia and zirconia influence acidity in opposite ways, which impacts deactivation in the decomposition of 2‐methyl‐3‐butyn‐2‐ol.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijac.13816</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2438-0063</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-542X |
ispartof | International journal of applied ceramic technology, 2021-09, Vol.18 (5), p.1607-1622 |
issn | 1546-542X 1744-7402 |
language | eng |
recordid | cdi_crossref_primary_10_1111_ijac_13816 |
source | Wiley Online Library All Journals |
subjects | acidity Alumina Aluminum Aluminum oxide Cerium oxides Composite materials Ethanol hydrothermal stability Influence Isotherms Magnesium multicomponent metal oxides OSC Pore size distribution Porosity quaternary composites Reforming RE‐alumina‐magnesia‐zirconia solid solution Solid solutions Specific surface Storage capacity Surface area Surface stability Thermogravimetry Zirconium dioxide |
title | Multicomponent oxide composites for carriers in catalytic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20oxide%20composites%20for%20carriers%20in%20catalytic%20applications&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Vora,%20Aliakbar%20M.&rft.date=2021-09&rft.volume=18&rft.issue=5&rft.spage=1607&rft.epage=1622&rft.pages=1607-1622&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.13816&rft_dat=%3Cproquest_cross%3E2558430944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558430944&rft_id=info:pmid/&rfr_iscdi=true |