Multicomponent oxide composites for carriers in catalytic applications

Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied ceramic technology 2021-09, Vol.18 (5), p.1607-1622
Hauptverfasser: Vora, Aliakbar M., Yadav, Ran Bahadur, Basrur, Arun G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1622
container_issue 5
container_start_page 1607
container_title International journal of applied ceramic technology
container_volume 18
creator Vora, Aliakbar M.
Yadav, Ran Bahadur
Basrur, Arun G.
description Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surface area, porosity, acidity, hydrothermal stability, and oxygen storage capacity (OSC) differently. Interaction effects between components further influence these properties resulting in unexpected trends. Alumina and magnesia form solid solutions with zirconia until 650℃. Magnesia imparts better hydrothermal stability to zirconia. Aluminum and magnesium form MgAl2O4 spinel in ternary composites. Specific surface area varies linearly with alumina content. Alumina influences porosity, whereas magnesia influences pore diameter. The composites are mesoporous. Only binary composites present unimodal, pore size distribution. Composites containing alumina present type H2 isotherms while the remaining composites present H3 type isotherms. OSC increases over ZrO2/CeO2 5.7 to 15.3 molar. Magnesia and alumina affect microstructure and hydrothermal stability in contrasting ways. Thermogravimetry indicates that ternary composites of zirconia with alumina or magnesia form through oxolation. Surface hydroxyls with varying acidity are seen by FTIR in as synthesized samples. Magnesia and zirconia influence acidity in opposite ways, which impacts deactivation in the decomposition of 2‐methyl‐3‐butyn‐2‐ol.
doi_str_mv 10.1111/ijac.13816
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_ijac_13816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558430944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2316-22ffa80cb1aae378a578041c900eb66e45a6d4bf3314d5efb7d97224ba2b0cf3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqVw4QkicUNK8c_aSY5VRaGoiEsP3CzHsSVHaRzsVNC3x204s5edkb7ZlQahe4IXJM2Ta5VeEFYScYFmpADIC8D0MmkOIudAP6_RTYwtxgwYEzO0fj90o9N-P_je9GPmf1xjsrOPbjQxsz5kWoXgTIiZ65MeVXdMkUwNQ-eSdb6Pt-jKqi6au789R7v18271mm8_Xjar5TbXlBGRU2qtKrGuiVKGFaXiRYmB6ApjUwthgCvRQG0ZI9BwY-uiqQpKoVa0xtqyOXqYzg7Bfx1MHGXrD6FPHyXlvASGK4BEPU6UDj7GYKwcgturcJQEy1NN8lSTPNeUYDLB364zx39IuXlbrqbML0a_a0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558430944</pqid></control><display><type>article</type><title>Multicomponent oxide composites for carriers in catalytic applications</title><source>Wiley Online Library All Journals</source><creator>Vora, Aliakbar M. ; Yadav, Ran Bahadur ; Basrur, Arun G.</creator><creatorcontrib>Vora, Aliakbar M. ; Yadav, Ran Bahadur ; Basrur, Arun G.</creatorcontrib><description>Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surface area, porosity, acidity, hydrothermal stability, and oxygen storage capacity (OSC) differently. Interaction effects between components further influence these properties resulting in unexpected trends. Alumina and magnesia form solid solutions with zirconia until 650℃. Magnesia imparts better hydrothermal stability to zirconia. Aluminum and magnesium form MgAl2O4 spinel in ternary composites. Specific surface area varies linearly with alumina content. Alumina influences porosity, whereas magnesia influences pore diameter. The composites are mesoporous. Only binary composites present unimodal, pore size distribution. Composites containing alumina present type H2 isotherms while the remaining composites present H3 type isotherms. OSC increases over ZrO2/CeO2 5.7 to 15.3 molar. Magnesia and alumina affect microstructure and hydrothermal stability in contrasting ways. Thermogravimetry indicates that ternary composites of zirconia with alumina or magnesia form through oxolation. Surface hydroxyls with varying acidity are seen by FTIR in as synthesized samples. Magnesia and zirconia influence acidity in opposite ways, which impacts deactivation in the decomposition of 2‐methyl‐3‐butyn‐2‐ol.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.13816</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>acidity ; Alumina ; Aluminum ; Aluminum oxide ; Cerium oxides ; Composite materials ; Ethanol ; hydrothermal stability ; Influence ; Isotherms ; Magnesium ; multicomponent metal oxides ; OSC ; Pore size distribution ; Porosity ; quaternary composites ; Reforming ; RE‐alumina‐magnesia‐zirconia ; solid solution ; Solid solutions ; Specific surface ; Storage capacity ; Surface area ; Surface stability ; Thermogravimetry ; Zirconium dioxide</subject><ispartof>International journal of applied ceramic technology, 2021-09, Vol.18 (5), p.1607-1622</ispartof><rights>2021 The American Ceramic Society</rights><rights>Copyright © 2021 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2316-22ffa80cb1aae378a578041c900eb66e45a6d4bf3314d5efb7d97224ba2b0cf3</citedby><cites>FETCH-LOGICAL-c2316-22ffa80cb1aae378a578041c900eb66e45a6d4bf3314d5efb7d97224ba2b0cf3</cites><orcidid>0000-0003-2438-0063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.13816$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.13816$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Vora, Aliakbar M.</creatorcontrib><creatorcontrib>Yadav, Ran Bahadur</creatorcontrib><creatorcontrib>Basrur, Arun G.</creatorcontrib><title>Multicomponent oxide composites for carriers in catalytic applications</title><title>International journal of applied ceramic technology</title><description>Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surface area, porosity, acidity, hydrothermal stability, and oxygen storage capacity (OSC) differently. Interaction effects between components further influence these properties resulting in unexpected trends. Alumina and magnesia form solid solutions with zirconia until 650℃. Magnesia imparts better hydrothermal stability to zirconia. Aluminum and magnesium form MgAl2O4 spinel in ternary composites. Specific surface area varies linearly with alumina content. Alumina influences porosity, whereas magnesia influences pore diameter. The composites are mesoporous. Only binary composites present unimodal, pore size distribution. Composites containing alumina present type H2 isotherms while the remaining composites present H3 type isotherms. OSC increases over ZrO2/CeO2 5.7 to 15.3 molar. Magnesia and alumina affect microstructure and hydrothermal stability in contrasting ways. Thermogravimetry indicates that ternary composites of zirconia with alumina or magnesia form through oxolation. Surface hydroxyls with varying acidity are seen by FTIR in as synthesized samples. Magnesia and zirconia influence acidity in opposite ways, which impacts deactivation in the decomposition of 2‐methyl‐3‐butyn‐2‐ol.</description><subject>acidity</subject><subject>Alumina</subject><subject>Aluminum</subject><subject>Aluminum oxide</subject><subject>Cerium oxides</subject><subject>Composite materials</subject><subject>Ethanol</subject><subject>hydrothermal stability</subject><subject>Influence</subject><subject>Isotherms</subject><subject>Magnesium</subject><subject>multicomponent metal oxides</subject><subject>OSC</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>quaternary composites</subject><subject>Reforming</subject><subject>RE‐alumina‐magnesia‐zirconia</subject><subject>solid solution</subject><subject>Solid solutions</subject><subject>Specific surface</subject><subject>Storage capacity</subject><subject>Surface area</subject><subject>Surface stability</subject><subject>Thermogravimetry</subject><subject>Zirconium dioxide</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqVw4QkicUNK8c_aSY5VRaGoiEsP3CzHsSVHaRzsVNC3x204s5edkb7ZlQahe4IXJM2Ta5VeEFYScYFmpADIC8D0MmkOIudAP6_RTYwtxgwYEzO0fj90o9N-P_je9GPmf1xjsrOPbjQxsz5kWoXgTIiZ65MeVXdMkUwNQ-eSdb6Pt-jKqi6au789R7v18271mm8_Xjar5TbXlBGRU2qtKrGuiVKGFaXiRYmB6ApjUwthgCvRQG0ZI9BwY-uiqQpKoVa0xtqyOXqYzg7Bfx1MHGXrD6FPHyXlvASGK4BEPU6UDj7GYKwcgturcJQEy1NN8lSTPNeUYDLB364zx39IuXlbrqbML0a_a0w</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Vora, Aliakbar M.</creator><creator>Yadav, Ran Bahadur</creator><creator>Basrur, Arun G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2438-0063</orcidid></search><sort><creationdate>202109</creationdate><title>Multicomponent oxide composites for carriers in catalytic applications</title><author>Vora, Aliakbar M. ; Yadav, Ran Bahadur ; Basrur, Arun G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2316-22ffa80cb1aae378a578041c900eb66e45a6d4bf3314d5efb7d97224ba2b0cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>acidity</topic><topic>Alumina</topic><topic>Aluminum</topic><topic>Aluminum oxide</topic><topic>Cerium oxides</topic><topic>Composite materials</topic><topic>Ethanol</topic><topic>hydrothermal stability</topic><topic>Influence</topic><topic>Isotherms</topic><topic>Magnesium</topic><topic>multicomponent metal oxides</topic><topic>OSC</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>quaternary composites</topic><topic>Reforming</topic><topic>RE‐alumina‐magnesia‐zirconia</topic><topic>solid solution</topic><topic>Solid solutions</topic><topic>Specific surface</topic><topic>Storage capacity</topic><topic>Surface area</topic><topic>Surface stability</topic><topic>Thermogravimetry</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vora, Aliakbar M.</creatorcontrib><creatorcontrib>Yadav, Ran Bahadur</creatorcontrib><creatorcontrib>Basrur, Arun G.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vora, Aliakbar M.</au><au>Yadav, Ran Bahadur</au><au>Basrur, Arun G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent oxide composites for carriers in catalytic applications</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2021-09</date><risdate>2021</risdate><volume>18</volume><issue>5</issue><spage>1607</spage><epage>1622</epage><pages>1607-1622</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>Binary, ternary, and quaternary composite oxides of rare earths (La and Ce) with one or more of aluminum, magnesium, and zirconium, prepared by coprecipitation are studied. Potential use is carrier in steam or dry reforming of hydrocarbons and ethanol. Individual components influence specific surface area, porosity, acidity, hydrothermal stability, and oxygen storage capacity (OSC) differently. Interaction effects between components further influence these properties resulting in unexpected trends. Alumina and magnesia form solid solutions with zirconia until 650℃. Magnesia imparts better hydrothermal stability to zirconia. Aluminum and magnesium form MgAl2O4 spinel in ternary composites. Specific surface area varies linearly with alumina content. Alumina influences porosity, whereas magnesia influences pore diameter. The composites are mesoporous. Only binary composites present unimodal, pore size distribution. Composites containing alumina present type H2 isotherms while the remaining composites present H3 type isotherms. OSC increases over ZrO2/CeO2 5.7 to 15.3 molar. Magnesia and alumina affect microstructure and hydrothermal stability in contrasting ways. Thermogravimetry indicates that ternary composites of zirconia with alumina or magnesia form through oxolation. Surface hydroxyls with varying acidity are seen by FTIR in as synthesized samples. Magnesia and zirconia influence acidity in opposite ways, which impacts deactivation in the decomposition of 2‐methyl‐3‐butyn‐2‐ol.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijac.13816</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2438-0063</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1546-542X
ispartof International journal of applied ceramic technology, 2021-09, Vol.18 (5), p.1607-1622
issn 1546-542X
1744-7402
language eng
recordid cdi_crossref_primary_10_1111_ijac_13816
source Wiley Online Library All Journals
subjects acidity
Alumina
Aluminum
Aluminum oxide
Cerium oxides
Composite materials
Ethanol
hydrothermal stability
Influence
Isotherms
Magnesium
multicomponent metal oxides
OSC
Pore size distribution
Porosity
quaternary composites
Reforming
RE‐alumina‐magnesia‐zirconia
solid solution
Solid solutions
Specific surface
Storage capacity
Surface area
Surface stability
Thermogravimetry
Zirconium dioxide
title Multicomponent oxide composites for carriers in catalytic applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20oxide%20composites%20for%20carriers%20in%20catalytic%20applications&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Vora,%20Aliakbar%20M.&rft.date=2021-09&rft.volume=18&rft.issue=5&rft.spage=1607&rft.epage=1622&rft.pages=1607-1622&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.13816&rft_dat=%3Cproquest_cross%3E2558430944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558430944&rft_id=info:pmid/&rfr_iscdi=true