Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning

Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Grass and forage science 2024-12, Vol.79 (4), p.543-556
Hauptverfasser: Sánchez, Miller Ruiz, Silva, Carlos Augusto Alves Cardoso, Demattê, José Alexandre Melo, Mendonça, Fernando Campos, Silva, Marcelo Andrade, Romanelli, Thiago Libório, Fiorio, Peterson Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 4
container_start_page 543
container_title Grass and forage science
container_volume 79
creator Sánchez, Miller Ruiz
Silva, Carlos Augusto Alves Cardoso
Demattê, José Alexandre Melo
Mendonça, Fernando Campos
Silva, Marcelo Andrade
Romanelli, Thiago Libório
Fiorio, Peterson Ricardo
description Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels of nitrogen fertilization (104, 208, 312, and 416 kg ha−1). Spectral signatures (400–2500 nm) and chlorophyll contents of the leaves were obtained in October, November, and December 2017, and January 2018. Models were generated using Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Two validation techniques were employed: holdout, dividing the data into training (75%) and testing (25%) sets; and leave‐one‐date‐out cross‐validation (LOOCV), in which one date was omitted during model training and used to predict the omitted date's value. Chlorophyll concentrations varied according to N doses, with the highest concentrations observed in October and December. In these months, there were greater variations in spectral reflectance in the green and red bands (530–680 nm). December was identified as the ideal period for chlorophyll quantification, for both holdout and LOOCV validation techniques. The SVR technique performed best (R2 = 0.71, RMSE = 0.23 mg g−1, dr = 0.72) compared to RF (R2 = 0.63, RMSE = 0.27 mg g−1, dr = 0.66) and PLSR (R2 = 0.60, RMSE = 0.27 mg g−1, dr = 0.67). Therefore, the prediction of chlorophyll in Mombaça grass using spectroradiometry is promising and applicable across different cultivation periods.
doi_str_mv 10.1111/gfs.12689
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_gfs_12689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3161324443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1879-bb94f5adb1a01cc4980b3ce1790dab2aa37dafa3b11af618bf51cd3d4acbac713</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1hM7ryWqaEEqAglYR-NHmlTOA7styhfxIfwYKWHLbGYW597RvYRcA5vBMPNN4WcQxml2QibA4ygIRSZOyYSBCIMoFOE5ufB-yxhLMs4nxL84oyu1qw6G1q021lbNhrYFVaVtXduVvbW0auhTW0v8_kK6ceg9tQYPxlPZ07LvjPOdUTuHljpT2OHERhmqcYcUG01rVGXVmKPINYP9JTkr0Hpz9ben5H15_7Z4CNbPq8fF3TpQkCZZIGUmigi1BGSglMhSJrkykGRMowwReaKxQC4BsIghlUUESnMtUElUCfApuRl9O9d-7I3f5dt275rhZc4hBh4KIfhA3Y6Ucq33Q4C8c1WNrs-B5cdO86HT_LfTgZ2P7GdlTf8_mK-Wr6PiB0jBfEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3161324443</pqid></control><display><type>article</type><title>Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sánchez, Miller Ruiz ; Silva, Carlos Augusto Alves Cardoso ; Demattê, José Alexandre Melo ; Mendonça, Fernando Campos ; Silva, Marcelo Andrade ; Romanelli, Thiago Libório ; Fiorio, Peterson Ricardo</creator><creatorcontrib>Sánchez, Miller Ruiz ; Silva, Carlos Augusto Alves Cardoso ; Demattê, José Alexandre Melo ; Mendonça, Fernando Campos ; Silva, Marcelo Andrade ; Romanelli, Thiago Libório ; Fiorio, Peterson Ricardo</creatorcontrib><description>Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels of nitrogen fertilization (104, 208, 312, and 416 kg ha−1). Spectral signatures (400–2500 nm) and chlorophyll contents of the leaves were obtained in October, November, and December 2017, and January 2018. Models were generated using Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Two validation techniques were employed: holdout, dividing the data into training (75%) and testing (25%) sets; and leave‐one‐date‐out cross‐validation (LOOCV), in which one date was omitted during model training and used to predict the omitted date's value. Chlorophyll concentrations varied according to N doses, with the highest concentrations observed in October and December. In these months, there were greater variations in spectral reflectance in the green and red bands (530–680 nm). December was identified as the ideal period for chlorophyll quantification, for both holdout and LOOCV validation techniques. The SVR technique performed best (R2 = 0.71, RMSE = 0.23 mg g−1, dr = 0.72) compared to RF (R2 = 0.63, RMSE = 0.27 mg g−1, dr = 0.66) and PLSR (R2 = 0.60, RMSE = 0.27 mg g−1, dr = 0.67). Therefore, the prediction of chlorophyll in Mombaça grass using spectroradiometry is promising and applicable across different cultivation periods.</description><identifier>ISSN: 0142-5242</identifier><identifier>EISSN: 1365-2494</identifier><identifier>DOI: 10.1111/gfs.12689</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Chlorophyll ; Crop production ; Fertilization ; Grasses ; Learning algorithms ; Leaves ; Machine learning ; Mathematical models ; Megathyrsus maximus ; precision agriculture ; Prediction models ; Predictions ; Reflectance ; Regression analysis ; remote sensing ; Spectral reflectance ; Spectral signatures ; Support vector machines</subject><ispartof>Grass and forage science, 2024-12, Vol.79 (4), p.543-556</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1879-bb94f5adb1a01cc4980b3ce1790dab2aa37dafa3b11af618bf51cd3d4acbac713</cites><orcidid>0000-0003-4899-7092 ; 0000-0001-5407-9031 ; 0000-0001-5328-0323 ; 0000-0001-9079-8981 ; 0000-0003-3461-357X ; 0000-0002-7394-1288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgfs.12689$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgfs.12689$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sánchez, Miller Ruiz</creatorcontrib><creatorcontrib>Silva, Carlos Augusto Alves Cardoso</creatorcontrib><creatorcontrib>Demattê, José Alexandre Melo</creatorcontrib><creatorcontrib>Mendonça, Fernando Campos</creatorcontrib><creatorcontrib>Silva, Marcelo Andrade</creatorcontrib><creatorcontrib>Romanelli, Thiago Libório</creatorcontrib><creatorcontrib>Fiorio, Peterson Ricardo</creatorcontrib><title>Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning</title><title>Grass and forage science</title><description>Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels of nitrogen fertilization (104, 208, 312, and 416 kg ha−1). Spectral signatures (400–2500 nm) and chlorophyll contents of the leaves were obtained in October, November, and December 2017, and January 2018. Models were generated using Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Two validation techniques were employed: holdout, dividing the data into training (75%) and testing (25%) sets; and leave‐one‐date‐out cross‐validation (LOOCV), in which one date was omitted during model training and used to predict the omitted date's value. Chlorophyll concentrations varied according to N doses, with the highest concentrations observed in October and December. In these months, there were greater variations in spectral reflectance in the green and red bands (530–680 nm). December was identified as the ideal period for chlorophyll quantification, for both holdout and LOOCV validation techniques. The SVR technique performed best (R2 = 0.71, RMSE = 0.23 mg g−1, dr = 0.72) compared to RF (R2 = 0.63, RMSE = 0.27 mg g−1, dr = 0.66) and PLSR (R2 = 0.60, RMSE = 0.27 mg g−1, dr = 0.67). Therefore, the prediction of chlorophyll in Mombaça grass using spectroradiometry is promising and applicable across different cultivation periods.</description><subject>Chlorophyll</subject><subject>Crop production</subject><subject>Fertilization</subject><subject>Grasses</subject><subject>Learning algorithms</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Megathyrsus maximus</subject><subject>precision agriculture</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>remote sensing</subject><subject>Spectral reflectance</subject><subject>Spectral signatures</subject><subject>Support vector machines</subject><issn>0142-5242</issn><issn>1365-2494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1hM7ryWqaEEqAglYR-NHmlTOA7styhfxIfwYKWHLbGYW597RvYRcA5vBMPNN4WcQxml2QibA4ygIRSZOyYSBCIMoFOE5ufB-yxhLMs4nxL84oyu1qw6G1q021lbNhrYFVaVtXduVvbW0auhTW0v8_kK6ceg9tQYPxlPZ07LvjPOdUTuHljpT2OHERhmqcYcUG01rVGXVmKPINYP9JTkr0Hpz9ben5H15_7Z4CNbPq8fF3TpQkCZZIGUmigi1BGSglMhSJrkykGRMowwReaKxQC4BsIghlUUESnMtUElUCfApuRl9O9d-7I3f5dt275rhZc4hBh4KIfhA3Y6Ucq33Q4C8c1WNrs-B5cdO86HT_LfTgZ2P7GdlTf8_mK-Wr6PiB0jBfEU</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Sánchez, Miller Ruiz</creator><creator>Silva, Carlos Augusto Alves Cardoso</creator><creator>Demattê, José Alexandre Melo</creator><creator>Mendonça, Fernando Campos</creator><creator>Silva, Marcelo Andrade</creator><creator>Romanelli, Thiago Libório</creator><creator>Fiorio, Peterson Ricardo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7ST</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4899-7092</orcidid><orcidid>https://orcid.org/0000-0001-5407-9031</orcidid><orcidid>https://orcid.org/0000-0001-5328-0323</orcidid><orcidid>https://orcid.org/0000-0001-9079-8981</orcidid><orcidid>https://orcid.org/0000-0003-3461-357X</orcidid><orcidid>https://orcid.org/0000-0002-7394-1288</orcidid></search><sort><creationdate>202412</creationdate><title>Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning</title><author>Sánchez, Miller Ruiz ; Silva, Carlos Augusto Alves Cardoso ; Demattê, José Alexandre Melo ; Mendonça, Fernando Campos ; Silva, Marcelo Andrade ; Romanelli, Thiago Libório ; Fiorio, Peterson Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1879-bb94f5adb1a01cc4980b3ce1790dab2aa37dafa3b11af618bf51cd3d4acbac713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chlorophyll</topic><topic>Crop production</topic><topic>Fertilization</topic><topic>Grasses</topic><topic>Learning algorithms</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Megathyrsus maximus</topic><topic>precision agriculture</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>remote sensing</topic><topic>Spectral reflectance</topic><topic>Spectral signatures</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez, Miller Ruiz</creatorcontrib><creatorcontrib>Silva, Carlos Augusto Alves Cardoso</creatorcontrib><creatorcontrib>Demattê, José Alexandre Melo</creatorcontrib><creatorcontrib>Mendonça, Fernando Campos</creatorcontrib><creatorcontrib>Silva, Marcelo Andrade</creatorcontrib><creatorcontrib>Romanelli, Thiago Libório</creatorcontrib><creatorcontrib>Fiorio, Peterson Ricardo</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Grass and forage science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez, Miller Ruiz</au><au>Silva, Carlos Augusto Alves Cardoso</au><au>Demattê, José Alexandre Melo</au><au>Mendonça, Fernando Campos</au><au>Silva, Marcelo Andrade</au><au>Romanelli, Thiago Libório</au><au>Fiorio, Peterson Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning</atitle><jtitle>Grass and forage science</jtitle><date>2024-12</date><risdate>2024</risdate><volume>79</volume><issue>4</issue><spage>543</spage><epage>556</epage><pages>543-556</pages><issn>0142-5242</issn><eissn>1365-2494</eissn><abstract>Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels of nitrogen fertilization (104, 208, 312, and 416 kg ha−1). Spectral signatures (400–2500 nm) and chlorophyll contents of the leaves were obtained in October, November, and December 2017, and January 2018. Models were generated using Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Two validation techniques were employed: holdout, dividing the data into training (75%) and testing (25%) sets; and leave‐one‐date‐out cross‐validation (LOOCV), in which one date was omitted during model training and used to predict the omitted date's value. Chlorophyll concentrations varied according to N doses, with the highest concentrations observed in October and December. In these months, there were greater variations in spectral reflectance in the green and red bands (530–680 nm). December was identified as the ideal period for chlorophyll quantification, for both holdout and LOOCV validation techniques. The SVR technique performed best (R2 = 0.71, RMSE = 0.23 mg g−1, dr = 0.72) compared to RF (R2 = 0.63, RMSE = 0.27 mg g−1, dr = 0.66) and PLSR (R2 = 0.60, RMSE = 0.27 mg g−1, dr = 0.67). Therefore, the prediction of chlorophyll in Mombaça grass using spectroradiometry is promising and applicable across different cultivation periods.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/gfs.12689</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4899-7092</orcidid><orcidid>https://orcid.org/0000-0001-5407-9031</orcidid><orcidid>https://orcid.org/0000-0001-5328-0323</orcidid><orcidid>https://orcid.org/0000-0001-9079-8981</orcidid><orcidid>https://orcid.org/0000-0003-3461-357X</orcidid><orcidid>https://orcid.org/0000-0002-7394-1288</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-5242
ispartof Grass and forage science, 2024-12, Vol.79 (4), p.543-556
issn 0142-5242
1365-2494
language eng
recordid cdi_crossref_primary_10_1111_gfs_12689
source Wiley Online Library Journals Frontfile Complete
subjects Chlorophyll
Crop production
Fertilization
Grasses
Learning algorithms
Leaves
Machine learning
Mathematical models
Megathyrsus maximus
precision agriculture
Prediction models
Predictions
Reflectance
Regression analysis
remote sensing
Spectral reflectance
Spectral signatures
Support vector machines
title Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modelling%20of%20chlorophyll%20in%20Momba%C3%A7a%20grass%20leaves%20by%20hyperspectral%20reflectance%20data%20and%20machine%20learning&rft.jtitle=Grass%20and%20forage%20science&rft.au=S%C3%A1nchez,%20Miller%20Ruiz&rft.date=2024-12&rft.volume=79&rft.issue=4&rft.spage=543&rft.epage=556&rft.pages=543-556&rft.issn=0142-5242&rft.eissn=1365-2494&rft_id=info:doi/10.1111/gfs.12689&rft_dat=%3Cproquest_cross%3E3161324443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3161324443&rft_id=info:pmid/&rfr_iscdi=true