Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning
Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels o...
Gespeichert in:
Veröffentlicht in: | Grass and forage science 2024-12, Vol.79 (4), p.543-556 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 556 |
---|---|
container_issue | 4 |
container_start_page | 543 |
container_title | Grass and forage science |
container_volume | 79 |
creator | Sánchez, Miller Ruiz Silva, Carlos Augusto Alves Cardoso Demattê, José Alexandre Melo Mendonça, Fernando Campos Silva, Marcelo Andrade Romanelli, Thiago Libório Fiorio, Peterson Ricardo |
description | Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels of nitrogen fertilization (104, 208, 312, and 416 kg ha−1). Spectral signatures (400–2500 nm) and chlorophyll contents of the leaves were obtained in October, November, and December 2017, and January 2018. Models were generated using Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Two validation techniques were employed: holdout, dividing the data into training (75%) and testing (25%) sets; and leave‐one‐date‐out cross‐validation (LOOCV), in which one date was omitted during model training and used to predict the omitted date's value. Chlorophyll concentrations varied according to N doses, with the highest concentrations observed in October and December. In these months, there were greater variations in spectral reflectance in the green and red bands (530–680 nm). December was identified as the ideal period for chlorophyll quantification, for both holdout and LOOCV validation techniques. The SVR technique performed best (R2 = 0.71, RMSE = 0.23 mg g−1, dr = 0.72) compared to RF (R2 = 0.63, RMSE = 0.27 mg g−1, dr = 0.66) and PLSR (R2 = 0.60, RMSE = 0.27 mg g−1, dr = 0.67). Therefore, the prediction of chlorophyll in Mombaça grass using spectroradiometry is promising and applicable across different cultivation periods. |
doi_str_mv | 10.1111/gfs.12689 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_gfs_12689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3161324443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1879-bb94f5adb1a01cc4980b3ce1790dab2aa37dafa3b11af618bf51cd3d4acbac713</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1hM7ryWqaEEqAglYR-NHmlTOA7styhfxIfwYKWHLbGYW597RvYRcA5vBMPNN4WcQxml2QibA4ygIRSZOyYSBCIMoFOE5ufB-yxhLMs4nxL84oyu1qw6G1q021lbNhrYFVaVtXduVvbW0auhTW0v8_kK6ceg9tQYPxlPZ07LvjPOdUTuHljpT2OHERhmqcYcUG01rVGXVmKPINYP9JTkr0Hpz9ben5H15_7Z4CNbPq8fF3TpQkCZZIGUmigi1BGSglMhSJrkykGRMowwReaKxQC4BsIghlUUESnMtUElUCfApuRl9O9d-7I3f5dt275rhZc4hBh4KIfhA3Y6Ucq33Q4C8c1WNrs-B5cdO86HT_LfTgZ2P7GdlTf8_mK-Wr6PiB0jBfEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3161324443</pqid></control><display><type>article</type><title>Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sánchez, Miller Ruiz ; Silva, Carlos Augusto Alves Cardoso ; Demattê, José Alexandre Melo ; Mendonça, Fernando Campos ; Silva, Marcelo Andrade ; Romanelli, Thiago Libório ; Fiorio, Peterson Ricardo</creator><creatorcontrib>Sánchez, Miller Ruiz ; Silva, Carlos Augusto Alves Cardoso ; Demattê, José Alexandre Melo ; Mendonça, Fernando Campos ; Silva, Marcelo Andrade ; Romanelli, Thiago Libório ; Fiorio, Peterson Ricardo</creatorcontrib><description>Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels of nitrogen fertilization (104, 208, 312, and 416 kg ha−1). Spectral signatures (400–2500 nm) and chlorophyll contents of the leaves were obtained in October, November, and December 2017, and January 2018. Models were generated using Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Two validation techniques were employed: holdout, dividing the data into training (75%) and testing (25%) sets; and leave‐one‐date‐out cross‐validation (LOOCV), in which one date was omitted during model training and used to predict the omitted date's value. Chlorophyll concentrations varied according to N doses, with the highest concentrations observed in October and December. In these months, there were greater variations in spectral reflectance in the green and red bands (530–680 nm). December was identified as the ideal period for chlorophyll quantification, for both holdout and LOOCV validation techniques. The SVR technique performed best (R2 = 0.71, RMSE = 0.23 mg g−1, dr = 0.72) compared to RF (R2 = 0.63, RMSE = 0.27 mg g−1, dr = 0.66) and PLSR (R2 = 0.60, RMSE = 0.27 mg g−1, dr = 0.67). Therefore, the prediction of chlorophyll in Mombaça grass using spectroradiometry is promising and applicable across different cultivation periods.</description><identifier>ISSN: 0142-5242</identifier><identifier>EISSN: 1365-2494</identifier><identifier>DOI: 10.1111/gfs.12689</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Chlorophyll ; Crop production ; Fertilization ; Grasses ; Learning algorithms ; Leaves ; Machine learning ; Mathematical models ; Megathyrsus maximus ; precision agriculture ; Prediction models ; Predictions ; Reflectance ; Regression analysis ; remote sensing ; Spectral reflectance ; Spectral signatures ; Support vector machines</subject><ispartof>Grass and forage science, 2024-12, Vol.79 (4), p.543-556</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1879-bb94f5adb1a01cc4980b3ce1790dab2aa37dafa3b11af618bf51cd3d4acbac713</cites><orcidid>0000-0003-4899-7092 ; 0000-0001-5407-9031 ; 0000-0001-5328-0323 ; 0000-0001-9079-8981 ; 0000-0003-3461-357X ; 0000-0002-7394-1288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgfs.12689$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgfs.12689$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sánchez, Miller Ruiz</creatorcontrib><creatorcontrib>Silva, Carlos Augusto Alves Cardoso</creatorcontrib><creatorcontrib>Demattê, José Alexandre Melo</creatorcontrib><creatorcontrib>Mendonça, Fernando Campos</creatorcontrib><creatorcontrib>Silva, Marcelo Andrade</creatorcontrib><creatorcontrib>Romanelli, Thiago Libório</creatorcontrib><creatorcontrib>Fiorio, Peterson Ricardo</creatorcontrib><title>Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning</title><title>Grass and forage science</title><description>Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels of nitrogen fertilization (104, 208, 312, and 416 kg ha−1). Spectral signatures (400–2500 nm) and chlorophyll contents of the leaves were obtained in October, November, and December 2017, and January 2018. Models were generated using Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Two validation techniques were employed: holdout, dividing the data into training (75%) and testing (25%) sets; and leave‐one‐date‐out cross‐validation (LOOCV), in which one date was omitted during model training and used to predict the omitted date's value. Chlorophyll concentrations varied according to N doses, with the highest concentrations observed in October and December. In these months, there were greater variations in spectral reflectance in the green and red bands (530–680 nm). December was identified as the ideal period for chlorophyll quantification, for both holdout and LOOCV validation techniques. The SVR technique performed best (R2 = 0.71, RMSE = 0.23 mg g−1, dr = 0.72) compared to RF (R2 = 0.63, RMSE = 0.27 mg g−1, dr = 0.66) and PLSR (R2 = 0.60, RMSE = 0.27 mg g−1, dr = 0.67). Therefore, the prediction of chlorophyll in Mombaça grass using spectroradiometry is promising and applicable across different cultivation periods.</description><subject>Chlorophyll</subject><subject>Crop production</subject><subject>Fertilization</subject><subject>Grasses</subject><subject>Learning algorithms</subject><subject>Leaves</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Megathyrsus maximus</subject><subject>precision agriculture</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Reflectance</subject><subject>Regression analysis</subject><subject>remote sensing</subject><subject>Spectral reflectance</subject><subject>Spectral signatures</subject><subject>Support vector machines</subject><issn>0142-5242</issn><issn>1365-2494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4A8ssWKR1hM7ryWqaEEqAglYR-NHmlTOA7styhfxIfwYKWHLbGYW597RvYRcA5vBMPNN4WcQxml2QibA4ygIRSZOyYSBCIMoFOE5ufB-yxhLMs4nxL84oyu1qw6G1q021lbNhrYFVaVtXduVvbW0auhTW0v8_kK6ceg9tQYPxlPZ07LvjPOdUTuHljpT2OHERhmqcYcUG01rVGXVmKPINYP9JTkr0Hpz9ben5H15_7Z4CNbPq8fF3TpQkCZZIGUmigi1BGSglMhSJrkykGRMowwReaKxQC4BsIghlUUESnMtUElUCfApuRl9O9d-7I3f5dt275rhZc4hBh4KIfhA3Y6Ucq33Q4C8c1WNrs-B5cdO86HT_LfTgZ2P7GdlTf8_mK-Wr6PiB0jBfEU</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Sánchez, Miller Ruiz</creator><creator>Silva, Carlos Augusto Alves Cardoso</creator><creator>Demattê, José Alexandre Melo</creator><creator>Mendonça, Fernando Campos</creator><creator>Silva, Marcelo Andrade</creator><creator>Romanelli, Thiago Libório</creator><creator>Fiorio, Peterson Ricardo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7ST</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4899-7092</orcidid><orcidid>https://orcid.org/0000-0001-5407-9031</orcidid><orcidid>https://orcid.org/0000-0001-5328-0323</orcidid><orcidid>https://orcid.org/0000-0001-9079-8981</orcidid><orcidid>https://orcid.org/0000-0003-3461-357X</orcidid><orcidid>https://orcid.org/0000-0002-7394-1288</orcidid></search><sort><creationdate>202412</creationdate><title>Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning</title><author>Sánchez, Miller Ruiz ; Silva, Carlos Augusto Alves Cardoso ; Demattê, José Alexandre Melo ; Mendonça, Fernando Campos ; Silva, Marcelo Andrade ; Romanelli, Thiago Libório ; Fiorio, Peterson Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1879-bb94f5adb1a01cc4980b3ce1790dab2aa37dafa3b11af618bf51cd3d4acbac713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chlorophyll</topic><topic>Crop production</topic><topic>Fertilization</topic><topic>Grasses</topic><topic>Learning algorithms</topic><topic>Leaves</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Megathyrsus maximus</topic><topic>precision agriculture</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Reflectance</topic><topic>Regression analysis</topic><topic>remote sensing</topic><topic>Spectral reflectance</topic><topic>Spectral signatures</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sánchez, Miller Ruiz</creatorcontrib><creatorcontrib>Silva, Carlos Augusto Alves Cardoso</creatorcontrib><creatorcontrib>Demattê, José Alexandre Melo</creatorcontrib><creatorcontrib>Mendonça, Fernando Campos</creatorcontrib><creatorcontrib>Silva, Marcelo Andrade</creatorcontrib><creatorcontrib>Romanelli, Thiago Libório</creatorcontrib><creatorcontrib>Fiorio, Peterson Ricardo</creatorcontrib><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Grass and forage science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sánchez, Miller Ruiz</au><au>Silva, Carlos Augusto Alves Cardoso</au><au>Demattê, José Alexandre Melo</au><au>Mendonça, Fernando Campos</au><au>Silva, Marcelo Andrade</au><au>Romanelli, Thiago Libório</au><au>Fiorio, Peterson Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning</atitle><jtitle>Grass and forage science</jtitle><date>2024-12</date><risdate>2024</risdate><volume>79</volume><issue>4</issue><spage>543</spage><epage>556</epage><pages>543-556</pages><issn>0142-5242</issn><eissn>1365-2494</eissn><abstract>Chlorophyll (Chl) concentration is one of the factors that affects crop productivity. This study investigated the prediction of chlorophyll concentrations in Mombaça grass' leaves using hyperspectral data and machine learning techniques. Chlorophyll variations were induced by different levels of nitrogen fertilization (104, 208, 312, and 416 kg ha−1). Spectral signatures (400–2500 nm) and chlorophyll contents of the leaves were obtained in October, November, and December 2017, and January 2018. Models were generated using Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Two validation techniques were employed: holdout, dividing the data into training (75%) and testing (25%) sets; and leave‐one‐date‐out cross‐validation (LOOCV), in which one date was omitted during model training and used to predict the omitted date's value. Chlorophyll concentrations varied according to N doses, with the highest concentrations observed in October and December. In these months, there were greater variations in spectral reflectance in the green and red bands (530–680 nm). December was identified as the ideal period for chlorophyll quantification, for both holdout and LOOCV validation techniques. The SVR technique performed best (R2 = 0.71, RMSE = 0.23 mg g−1, dr = 0.72) compared to RF (R2 = 0.63, RMSE = 0.27 mg g−1, dr = 0.66) and PLSR (R2 = 0.60, RMSE = 0.27 mg g−1, dr = 0.67). Therefore, the prediction of chlorophyll in Mombaça grass using spectroradiometry is promising and applicable across different cultivation periods.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/gfs.12689</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4899-7092</orcidid><orcidid>https://orcid.org/0000-0001-5407-9031</orcidid><orcidid>https://orcid.org/0000-0001-5328-0323</orcidid><orcidid>https://orcid.org/0000-0001-9079-8981</orcidid><orcidid>https://orcid.org/0000-0003-3461-357X</orcidid><orcidid>https://orcid.org/0000-0002-7394-1288</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-5242 |
ispartof | Grass and forage science, 2024-12, Vol.79 (4), p.543-556 |
issn | 0142-5242 1365-2494 |
language | eng |
recordid | cdi_crossref_primary_10_1111_gfs_12689 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chlorophyll Crop production Fertilization Grasses Learning algorithms Leaves Machine learning Mathematical models Megathyrsus maximus precision agriculture Prediction models Predictions Reflectance Regression analysis remote sensing Spectral reflectance Spectral signatures Support vector machines |
title | Predictive modelling of chlorophyll in Mombaça grass leaves by hyperspectral reflectance data and machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A14%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20modelling%20of%20chlorophyll%20in%20Momba%C3%A7a%20grass%20leaves%20by%20hyperspectral%20reflectance%20data%20and%20machine%20learning&rft.jtitle=Grass%20and%20forage%20science&rft.au=S%C3%A1nchez,%20Miller%20Ruiz&rft.date=2024-12&rft.volume=79&rft.issue=4&rft.spage=543&rft.epage=556&rft.pages=543-556&rft.issn=0142-5242&rft.eissn=1365-2494&rft_id=info:doi/10.1111/gfs.12689&rft_dat=%3Cproquest_cross%3E3161324443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3161324443&rft_id=info:pmid/&rfr_iscdi=true |