GeoDa, From the Desktop to an Ecosystem for Exploring Spatial Data
Since its introduction more than 15 years ago, the GeoDa software for the exploration of spatial data has transitioned from a closed source Windows‐only solution to an open source and cross‐platform product that takes on the look and feel of the native operating system. This article reports on the e...
Gespeichert in:
Veröffentlicht in: | Geographical analysis 2022-07, Vol.54 (3), p.439-466 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 466 |
---|---|
container_issue | 3 |
container_start_page | 439 |
container_title | Geographical analysis |
container_volume | 54 |
creator | Anselin, Luc Li, Xun Koschinsky, Julia |
description | Since its introduction more than 15 years ago, the GeoDa software for the exploration of spatial data has transitioned from a closed source Windows‐only solution to an open source and cross‐platform product that takes on the look and feel of the native operating system. This article reports on the evolution in the functionality and architecture of the software and pays particular attention to its new implementation as a library, libgeoda. This library, through a clearly structured API, can be integrated into other software environments, such as R (rgeoda) and Python (pygeoda). This integration is illustrated with two small empirical examples, investigating local clusters in a historical London cholera data set and among socioeconomic determinants of health in Chicago. A timing experiment demonstrates the competitive performance of GeoDa desktop, libgeoda (C++), rgeoda and pygeoda compared to established solutions in R spdep and Python PySAL, evaluating conditional permutation inference for the Local Moran statistic. |
doi_str_mv | 10.1111/gean.12311 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_gean_12311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GEAN12311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2731-56c5dae4ecf89ec1581a325917153fd0d0e81f6d22edcd573c4a4d657ad8b95b3</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqWw4Qu8RqR47DiPZWnTglTBAlhHU3tSAmkd2ZEgf09KWDObuzn3ag5j1yBmMNzdjvAwA6kATtgEtMqiOFHylE2EgCRKVaLO2UUIH0IImYKasPs1uSXe8pV3e969E19S-OxcyzvH8cAL40IfOtrzynlefLeN8_Vhx19a7Gps-BI7vGRnFTaBrv5yyt5WxeviIdo8rx8X801kZKog0onRFikmU2U5GdAZoJI6h3T4s7LCCsqgSqyUZI3VqTIxxjbRKdpsm-utmrKbcdd4F4Knqmx9vUfflyDKo315tC9_7QcYRvirbqj_hyzXxfxp7PwAUBxb1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>GeoDa, From the Desktop to an Ecosystem for Exploring Spatial Data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Anselin, Luc ; Li, Xun ; Koschinsky, Julia</creator><creatorcontrib>Anselin, Luc ; Li, Xun ; Koschinsky, Julia</creatorcontrib><description>Since its introduction more than 15 years ago, the GeoDa software for the exploration of spatial data has transitioned from a closed source Windows‐only solution to an open source and cross‐platform product that takes on the look and feel of the native operating system. This article reports on the evolution in the functionality and architecture of the software and pays particular attention to its new implementation as a library, libgeoda. This library, through a clearly structured API, can be integrated into other software environments, such as R (rgeoda) and Python (pygeoda). This integration is illustrated with two small empirical examples, investigating local clusters in a historical London cholera data set and among socioeconomic determinants of health in Chicago. A timing experiment demonstrates the competitive performance of GeoDa desktop, libgeoda (C++), rgeoda and pygeoda compared to established solutions in R spdep and Python PySAL, evaluating conditional permutation inference for the Local Moran statistic.</description><identifier>ISSN: 0016-7363</identifier><identifier>EISSN: 1538-4632</identifier><identifier>DOI: 10.1111/gean.12311</identifier><language>eng</language><ispartof>Geographical analysis, 2022-07, Vol.54 (3), p.439-466</ispartof><rights>2021 The Ohio State University</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2731-56c5dae4ecf89ec1581a325917153fd0d0e81f6d22edcd573c4a4d657ad8b95b3</citedby><cites>FETCH-LOGICAL-c2731-56c5dae4ecf89ec1581a325917153fd0d0e81f6d22edcd573c4a4d657ad8b95b3</cites><orcidid>0000-0003-1076-2220</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgean.12311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgean.12311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Anselin, Luc</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Koschinsky, Julia</creatorcontrib><title>GeoDa, From the Desktop to an Ecosystem for Exploring Spatial Data</title><title>Geographical analysis</title><description>Since its introduction more than 15 years ago, the GeoDa software for the exploration of spatial data has transitioned from a closed source Windows‐only solution to an open source and cross‐platform product that takes on the look and feel of the native operating system. This article reports on the evolution in the functionality and architecture of the software and pays particular attention to its new implementation as a library, libgeoda. This library, through a clearly structured API, can be integrated into other software environments, such as R (rgeoda) and Python (pygeoda). This integration is illustrated with two small empirical examples, investigating local clusters in a historical London cholera data set and among socioeconomic determinants of health in Chicago. A timing experiment demonstrates the competitive performance of GeoDa desktop, libgeoda (C++), rgeoda and pygeoda compared to established solutions in R spdep and Python PySAL, evaluating conditional permutation inference for the Local Moran statistic.</description><issn>0016-7363</issn><issn>1538-4632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqWw4Qu8RqR47DiPZWnTglTBAlhHU3tSAmkd2ZEgf09KWDObuzn3ag5j1yBmMNzdjvAwA6kATtgEtMqiOFHylE2EgCRKVaLO2UUIH0IImYKasPs1uSXe8pV3e969E19S-OxcyzvH8cAL40IfOtrzynlefLeN8_Vhx19a7Gps-BI7vGRnFTaBrv5yyt5WxeviIdo8rx8X801kZKog0onRFikmU2U5GdAZoJI6h3T4s7LCCsqgSqyUZI3VqTIxxjbRKdpsm-utmrKbcdd4F4Knqmx9vUfflyDKo315tC9_7QcYRvirbqj_hyzXxfxp7PwAUBxb1g</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Anselin, Luc</creator><creator>Li, Xun</creator><creator>Koschinsky, Julia</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1076-2220</orcidid></search><sort><creationdate>202207</creationdate><title>GeoDa, From the Desktop to an Ecosystem for Exploring Spatial Data</title><author>Anselin, Luc ; Li, Xun ; Koschinsky, Julia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2731-56c5dae4ecf89ec1581a325917153fd0d0e81f6d22edcd573c4a4d657ad8b95b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anselin, Luc</creatorcontrib><creatorcontrib>Li, Xun</creatorcontrib><creatorcontrib>Koschinsky, Julia</creatorcontrib><collection>CrossRef</collection><jtitle>Geographical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anselin, Luc</au><au>Li, Xun</au><au>Koschinsky, Julia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GeoDa, From the Desktop to an Ecosystem for Exploring Spatial Data</atitle><jtitle>Geographical analysis</jtitle><date>2022-07</date><risdate>2022</risdate><volume>54</volume><issue>3</issue><spage>439</spage><epage>466</epage><pages>439-466</pages><issn>0016-7363</issn><eissn>1538-4632</eissn><abstract>Since its introduction more than 15 years ago, the GeoDa software for the exploration of spatial data has transitioned from a closed source Windows‐only solution to an open source and cross‐platform product that takes on the look and feel of the native operating system. This article reports on the evolution in the functionality and architecture of the software and pays particular attention to its new implementation as a library, libgeoda. This library, through a clearly structured API, can be integrated into other software environments, such as R (rgeoda) and Python (pygeoda). This integration is illustrated with two small empirical examples, investigating local clusters in a historical London cholera data set and among socioeconomic determinants of health in Chicago. A timing experiment demonstrates the competitive performance of GeoDa desktop, libgeoda (C++), rgeoda and pygeoda compared to established solutions in R spdep and Python PySAL, evaluating conditional permutation inference for the Local Moran statistic.</abstract><doi>10.1111/gean.12311</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-1076-2220</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7363 |
ispartof | Geographical analysis, 2022-07, Vol.54 (3), p.439-466 |
issn | 0016-7363 1538-4632 |
language | eng |
recordid | cdi_crossref_primary_10_1111_gean_12311 |
source | Wiley Online Library Journals Frontfile Complete |
title | GeoDa, From the Desktop to an Ecosystem for Exploring Spatial Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GeoDa,%20From%20the%20Desktop%20to%20an%20Ecosystem%20for%20Exploring%20Spatial%20Data&rft.jtitle=Geographical%20analysis&rft.au=Anselin,%20Luc&rft.date=2022-07&rft.volume=54&rft.issue=3&rft.spage=439&rft.epage=466&rft.pages=439-466&rft.issn=0016-7363&rft.eissn=1538-4632&rft_id=info:doi/10.1111/gean.12311&rft_dat=%3Cwiley_cross%3EGEAN12311%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |