The Multiple Testing Issue in Geographically Weighted Regression

This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonfe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geographical analysis 2016-07, Vol.48 (3), p.233-247
Hauptverfasser: da Silva, Alan Ricardo, Fotheringham, A. Stewart
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 3
container_start_page 233
container_title Geographical analysis
container_volume 48
creator da Silva, Alan Ricardo
Fotheringham, A. Stewart
description This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonferroni correction and the Byrne, Charlton, and Fotheringham proposal which is based on the Benjamini and Hochberg False Discovery Rate. We conclude that our proposed correction is superior to others and that generally some correction in the conventional t‐test is necessary to avoid false positives in GWR.
doi_str_mv 10.1111/gean.12084
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_gean_12084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GEAN12084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3804-507e8ad27928a26281635294575a63b65549e22a67913da52099af63ea61a2f83</originalsourceid><addsrcrecordid>eNp9j81Kw0AYRQdRMFY3PsGshdT5yfxkZyk1FqqCRFyGz-RLMhKTkEmRvH1b49q7uZtzLxxCbjlb8mPuK4R2yQWz0RkJuJI2jLQU5yRgjOvQSC0vyZX3X4wxYbgMyENaI33eN6PrG6Qp-tG1Fd16v0fqWppgVw3Q1y6HppnoB7qqHrGgb1gN6L3r2mtyUULj8eavF-T9cZOun8Lda7Jdr3ZhLi2LQsUMWiiEiYUFoYXlWioRR8oo0PJTKxXFKARoE3NZgBIsjqHUEkFzEKWVC3I3_-ZD5_2AZdYP7huGKeMsO7lnJ_fs1_0I8xn-cQ1O_5BZslm9zJsDhtNaYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Multiple Testing Issue in Geographically Weighted Regression</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>da Silva, Alan Ricardo ; Fotheringham, A. Stewart</creator><creatorcontrib>da Silva, Alan Ricardo ; Fotheringham, A. Stewart</creatorcontrib><description>This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonferroni correction and the Byrne, Charlton, and Fotheringham proposal which is based on the Benjamini and Hochberg False Discovery Rate. We conclude that our proposed correction is superior to others and that generally some correction in the conventional t‐test is necessary to avoid false positives in GWR.</description><identifier>ISSN: 0016-7363</identifier><identifier>EISSN: 1538-4632</identifier><identifier>DOI: 10.1111/gean.12084</identifier><language>eng</language><ispartof>Geographical analysis, 2016-07, Vol.48 (3), p.233-247</ispartof><rights>2015 The Ohio State University</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3804-507e8ad27928a26281635294575a63b65549e22a67913da52099af63ea61a2f83</citedby><cites>FETCH-LOGICAL-c3804-507e8ad27928a26281635294575a63b65549e22a67913da52099af63ea61a2f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgean.12084$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgean.12084$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>da Silva, Alan Ricardo</creatorcontrib><creatorcontrib>Fotheringham, A. Stewart</creatorcontrib><title>The Multiple Testing Issue in Geographically Weighted Regression</title><title>Geographical analysis</title><description>This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonferroni correction and the Byrne, Charlton, and Fotheringham proposal which is based on the Benjamini and Hochberg False Discovery Rate. We conclude that our proposed correction is superior to others and that generally some correction in the conventional t‐test is necessary to avoid false positives in GWR.</description><issn>0016-7363</issn><issn>1538-4632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j81Kw0AYRQdRMFY3PsGshdT5yfxkZyk1FqqCRFyGz-RLMhKTkEmRvH1b49q7uZtzLxxCbjlb8mPuK4R2yQWz0RkJuJI2jLQU5yRgjOvQSC0vyZX3X4wxYbgMyENaI33eN6PrG6Qp-tG1Fd16v0fqWppgVw3Q1y6HppnoB7qqHrGgb1gN6L3r2mtyUULj8eavF-T9cZOun8Lda7Jdr3ZhLi2LQsUMWiiEiYUFoYXlWioRR8oo0PJTKxXFKARoE3NZgBIsjqHUEkFzEKWVC3I3_-ZD5_2AZdYP7huGKeMsO7lnJ_fs1_0I8xn-cQ1O_5BZslm9zJsDhtNaYw</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>da Silva, Alan Ricardo</creator><creator>Fotheringham, A. Stewart</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201607</creationdate><title>The Multiple Testing Issue in Geographically Weighted Regression</title><author>da Silva, Alan Ricardo ; Fotheringham, A. Stewart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3804-507e8ad27928a26281635294575a63b65549e22a67913da52099af63ea61a2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Alan Ricardo</creatorcontrib><creatorcontrib>Fotheringham, A. Stewart</creatorcontrib><collection>CrossRef</collection><jtitle>Geographical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Alan Ricardo</au><au>Fotheringham, A. Stewart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Multiple Testing Issue in Geographically Weighted Regression</atitle><jtitle>Geographical analysis</jtitle><date>2016-07</date><risdate>2016</risdate><volume>48</volume><issue>3</issue><spage>233</spage><epage>247</epage><pages>233-247</pages><issn>0016-7363</issn><eissn>1538-4632</eissn><abstract>This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonferroni correction and the Byrne, Charlton, and Fotheringham proposal which is based on the Benjamini and Hochberg False Discovery Rate. We conclude that our proposed correction is superior to others and that generally some correction in the conventional t‐test is necessary to avoid false positives in GWR.</abstract><doi>10.1111/gean.12084</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7363
ispartof Geographical analysis, 2016-07, Vol.48 (3), p.233-247
issn 0016-7363
1538-4632
language eng
recordid cdi_crossref_primary_10_1111_gean_12084
source Wiley Online Library Journals Frontfile Complete
title The Multiple Testing Issue in Geographically Weighted Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Multiple%20Testing%20Issue%20in%20Geographically%20Weighted%20Regression&rft.jtitle=Geographical%20analysis&rft.au=da%20Silva,%20Alan%20Ricardo&rft.date=2016-07&rft.volume=48&rft.issue=3&rft.spage=233&rft.epage=247&rft.pages=233-247&rft.issn=0016-7363&rft.eissn=1538-4632&rft_id=info:doi/10.1111/gean.12084&rft_dat=%3Cwiley_cross%3EGEAN12084%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true