The Multiple Testing Issue in Geographically Weighted Regression
This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonfe...
Gespeichert in:
Veröffentlicht in: | Geographical analysis 2016-07, Vol.48 (3), p.233-247 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | 3 |
container_start_page | 233 |
container_title | Geographical analysis |
container_volume | 48 |
creator | da Silva, Alan Ricardo Fotheringham, A. Stewart |
description | This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonferroni correction and the Byrne, Charlton, and Fotheringham proposal which is based on the Benjamini and Hochberg False Discovery Rate. We conclude that our proposed correction is superior to others and that generally some correction in the conventional t‐test is necessary to avoid false positives in GWR. |
doi_str_mv | 10.1111/gean.12084 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_gean_12084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GEAN12084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3804-507e8ad27928a26281635294575a63b65549e22a67913da52099af63ea61a2f83</originalsourceid><addsrcrecordid>eNp9j81Kw0AYRQdRMFY3PsGshdT5yfxkZyk1FqqCRFyGz-RLMhKTkEmRvH1b49q7uZtzLxxCbjlb8mPuK4R2yQWz0RkJuJI2jLQU5yRgjOvQSC0vyZX3X4wxYbgMyENaI33eN6PrG6Qp-tG1Fd16v0fqWppgVw3Q1y6HppnoB7qqHrGgb1gN6L3r2mtyUULj8eavF-T9cZOun8Lda7Jdr3ZhLi2LQsUMWiiEiYUFoYXlWioRR8oo0PJTKxXFKARoE3NZgBIsjqHUEkFzEKWVC3I3_-ZD5_2AZdYP7huGKeMsO7lnJ_fs1_0I8xn-cQ1O_5BZslm9zJsDhtNaYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Multiple Testing Issue in Geographically Weighted Regression</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>da Silva, Alan Ricardo ; Fotheringham, A. Stewart</creator><creatorcontrib>da Silva, Alan Ricardo ; Fotheringham, A. Stewart</creatorcontrib><description>This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonferroni correction and the Byrne, Charlton, and Fotheringham proposal which is based on the Benjamini and Hochberg False Discovery Rate. We conclude that our proposed correction is superior to others and that generally some correction in the conventional t‐test is necessary to avoid false positives in GWR.</description><identifier>ISSN: 0016-7363</identifier><identifier>EISSN: 1538-4632</identifier><identifier>DOI: 10.1111/gean.12084</identifier><language>eng</language><ispartof>Geographical analysis, 2016-07, Vol.48 (3), p.233-247</ispartof><rights>2015 The Ohio State University</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3804-507e8ad27928a26281635294575a63b65549e22a67913da52099af63ea61a2f83</citedby><cites>FETCH-LOGICAL-c3804-507e8ad27928a26281635294575a63b65549e22a67913da52099af63ea61a2f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgean.12084$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgean.12084$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>da Silva, Alan Ricardo</creatorcontrib><creatorcontrib>Fotheringham, A. Stewart</creatorcontrib><title>The Multiple Testing Issue in Geographically Weighted Regression</title><title>Geographical analysis</title><description>This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonferroni correction and the Byrne, Charlton, and Fotheringham proposal which is based on the Benjamini and Hochberg False Discovery Rate. We conclude that our proposed correction is superior to others and that generally some correction in the conventional t‐test is necessary to avoid false positives in GWR.</description><issn>0016-7363</issn><issn>1538-4632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9j81Kw0AYRQdRMFY3PsGshdT5yfxkZyk1FqqCRFyGz-RLMhKTkEmRvH1b49q7uZtzLxxCbjlb8mPuK4R2yQWz0RkJuJI2jLQU5yRgjOvQSC0vyZX3X4wxYbgMyENaI33eN6PrG6Qp-tG1Fd16v0fqWppgVw3Q1y6HppnoB7qqHrGgb1gN6L3r2mtyUULj8eavF-T9cZOun8Lda7Jdr3ZhLi2LQsUMWiiEiYUFoYXlWioRR8oo0PJTKxXFKARoE3NZgBIsjqHUEkFzEKWVC3I3_-ZD5_2AZdYP7huGKeMsO7lnJ_fs1_0I8xn-cQ1O_5BZslm9zJsDhtNaYw</recordid><startdate>201607</startdate><enddate>201607</enddate><creator>da Silva, Alan Ricardo</creator><creator>Fotheringham, A. Stewart</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201607</creationdate><title>The Multiple Testing Issue in Geographically Weighted Regression</title><author>da Silva, Alan Ricardo ; Fotheringham, A. Stewart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3804-507e8ad27928a26281635294575a63b65549e22a67913da52099af63ea61a2f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Alan Ricardo</creatorcontrib><creatorcontrib>Fotheringham, A. Stewart</creatorcontrib><collection>CrossRef</collection><jtitle>Geographical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>da Silva, Alan Ricardo</au><au>Fotheringham, A. Stewart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Multiple Testing Issue in Geographically Weighted Regression</atitle><jtitle>Geographical analysis</jtitle><date>2016-07</date><risdate>2016</risdate><volume>48</volume><issue>3</issue><spage>233</spage><epage>247</epage><pages>233-247</pages><issn>0016-7363</issn><eissn>1538-4632</eissn><abstract>This article describes the problem of multiple testing within a Geographically Weighted Regression framework and presents a possible solution to the problem which is based on a family‐wise error rate for dependent processes. We compare the solution presented here to other solutions such as the Bonferroni correction and the Byrne, Charlton, and Fotheringham proposal which is based on the Benjamini and Hochberg False Discovery Rate. We conclude that our proposed correction is superior to others and that generally some correction in the conventional t‐test is necessary to avoid false positives in GWR.</abstract><doi>10.1111/gean.12084</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7363 |
ispartof | Geographical analysis, 2016-07, Vol.48 (3), p.233-247 |
issn | 0016-7363 1538-4632 |
language | eng |
recordid | cdi_crossref_primary_10_1111_gean_12084 |
source | Wiley Online Library Journals Frontfile Complete |
title | The Multiple Testing Issue in Geographically Weighted Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Multiple%20Testing%20Issue%20in%20Geographically%20Weighted%20Regression&rft.jtitle=Geographical%20analysis&rft.au=da%20Silva,%20Alan%20Ricardo&rft.date=2016-07&rft.volume=48&rft.issue=3&rft.spage=233&rft.epage=247&rft.pages=233-247&rft.issn=0016-7363&rft.eissn=1538-4632&rft_id=info:doi/10.1111/gean.12084&rft_dat=%3Cwiley_cross%3EGEAN12084%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |