Increasing aridity will not offset CO 2 fertilization in fast-growing eucalypts with access to deep soil water

Rising atmospheric [CO ] (C ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to C ....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2021-06, Vol.27 (12), p.2970-2990
Hauptverfasser: Nadal-Sala, Daniel, Medlyn, Belinda E, Ruehr, Nadine K, Barton, Craig V M, Ellsworth, David S, Gracia, Carles, Tissue, David T, Tjoelker, Mark G, Sabaté, Santi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2990
container_issue 12
container_start_page 2970
container_title Global change biology
container_volume 27
creator Nadal-Sala, Daniel
Medlyn, Belinda E
Ruehr, Nadine K
Barton, Craig V M
Ellsworth, David S
Gracia, Carles
Tissue, David T
Tjoelker, Mark G
Sabaté, Santi
description Rising atmospheric [CO ] (C ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to C . Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated C (eC ) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2-year whole-tree chamber experiment with factorial C (ambient =380, elevated =620 μmol mol ) and watering treatments, and a 10-year stand-scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both C treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry-down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing C up to 700 μmol mol alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising C will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non-nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep-rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.
doi_str_mv 10.1111/gcb.15590
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_gcb_15590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33694242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c972-7d1fcb4745d3301a032b751029b5575a78c2a0bb69732f6c38537bf2c4e011b03</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EoqWw4AfQbFmk-Bk3S1TxqFSpm-4j27GLURpHtqsqfD0pBWZzZ3HuaHQQuid4TsZ52hk9J0JU-AJNCStFQfmivDztghcEEzZBNyl9YowZxeU1mjBWVpxyOkXdqjPRquS7HajoG58HOPq2hS5kCM4lm2G5AQrOxuxb_6WyDx34DpxKudjFcDxV7cGoduhzGsv5A5QxNiXIARpre0jBt3BU2cZbdOVUm-zdb87Q9vVlu3wv1pu31fJ5XZhK0kI2xBnNJRcNY5io8W0tBcG00kJIoeTCUIW1LivJqCsNWwgmtaOGW0yIxmyGHs9nTQwpRevqPvq9ikNNcH1SVo_K6h9lI_twZvuD3tvmn_xzxL4BV7JnLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Increasing aridity will not offset CO 2 fertilization in fast-growing eucalypts with access to deep soil water</title><source>Wiley Journals</source><creator>Nadal-Sala, Daniel ; Medlyn, Belinda E ; Ruehr, Nadine K ; Barton, Craig V M ; Ellsworth, David S ; Gracia, Carles ; Tissue, David T ; Tjoelker, Mark G ; Sabaté, Santi</creator><creatorcontrib>Nadal-Sala, Daniel ; Medlyn, Belinda E ; Ruehr, Nadine K ; Barton, Craig V M ; Ellsworth, David S ; Gracia, Carles ; Tissue, David T ; Tjoelker, Mark G ; Sabaté, Santi</creatorcontrib><description>Rising atmospheric [CO ] (C ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to C . Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated C (eC ) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2-year whole-tree chamber experiment with factorial C (ambient =380, elevated =620 μmol mol ) and watering treatments, and a 10-year stand-scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both C treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry-down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing C up to 700 μmol mol alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising C will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non-nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep-rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.15590</identifier><identifier>PMID: 33694242</identifier><language>eng</language><publisher>England</publisher><ispartof>Global change biology, 2021-06, Vol.27 (12), p.2970-2990</ispartof><rights>2021 The Authors. Global Change Biology published by John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c972-7d1fcb4745d3301a032b751029b5575a78c2a0bb69732f6c38537bf2c4e011b03</citedby><cites>FETCH-LOGICAL-c972-7d1fcb4745d3301a032b751029b5575a78c2a0bb69732f6c38537bf2c4e011b03</cites><orcidid>0000-0001-5728-9827 ; 0000-0002-0935-6201 ; 0000-0002-8497-2047 ; 0000-0003-4607-5238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33694242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nadal-Sala, Daniel</creatorcontrib><creatorcontrib>Medlyn, Belinda E</creatorcontrib><creatorcontrib>Ruehr, Nadine K</creatorcontrib><creatorcontrib>Barton, Craig V M</creatorcontrib><creatorcontrib>Ellsworth, David S</creatorcontrib><creatorcontrib>Gracia, Carles</creatorcontrib><creatorcontrib>Tissue, David T</creatorcontrib><creatorcontrib>Tjoelker, Mark G</creatorcontrib><creatorcontrib>Sabaté, Santi</creatorcontrib><title>Increasing aridity will not offset CO 2 fertilization in fast-growing eucalypts with access to deep soil water</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>Rising atmospheric [CO ] (C ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to C . Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated C (eC ) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2-year whole-tree chamber experiment with factorial C (ambient =380, elevated =620 μmol mol ) and watering treatments, and a 10-year stand-scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both C treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry-down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing C up to 700 μmol mol alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising C will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non-nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep-rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.</description><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EoqWw4AfQbFmk-Bk3S1TxqFSpm-4j27GLURpHtqsqfD0pBWZzZ3HuaHQQuid4TsZ52hk9J0JU-AJNCStFQfmivDztghcEEzZBNyl9YowZxeU1mjBWVpxyOkXdqjPRquS7HajoG58HOPq2hS5kCM4lm2G5AQrOxuxb_6WyDx34DpxKudjFcDxV7cGoduhzGsv5A5QxNiXIARpre0jBt3BU2cZbdOVUm-zdb87Q9vVlu3wv1pu31fJ5XZhK0kI2xBnNJRcNY5io8W0tBcG00kJIoeTCUIW1LivJqCsNWwgmtaOGW0yIxmyGHs9nTQwpRevqPvq9ikNNcH1SVo_K6h9lI_twZvuD3tvmn_xzxL4BV7JnLg</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Nadal-Sala, Daniel</creator><creator>Medlyn, Belinda E</creator><creator>Ruehr, Nadine K</creator><creator>Barton, Craig V M</creator><creator>Ellsworth, David S</creator><creator>Gracia, Carles</creator><creator>Tissue, David T</creator><creator>Tjoelker, Mark G</creator><creator>Sabaté, Santi</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0002-0935-6201</orcidid><orcidid>https://orcid.org/0000-0002-8497-2047</orcidid><orcidid>https://orcid.org/0000-0003-4607-5238</orcidid></search><sort><creationdate>202106</creationdate><title>Increasing aridity will not offset CO 2 fertilization in fast-growing eucalypts with access to deep soil water</title><author>Nadal-Sala, Daniel ; Medlyn, Belinda E ; Ruehr, Nadine K ; Barton, Craig V M ; Ellsworth, David S ; Gracia, Carles ; Tissue, David T ; Tjoelker, Mark G ; Sabaté, Santi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c972-7d1fcb4745d3301a032b751029b5575a78c2a0bb69732f6c38537bf2c4e011b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nadal-Sala, Daniel</creatorcontrib><creatorcontrib>Medlyn, Belinda E</creatorcontrib><creatorcontrib>Ruehr, Nadine K</creatorcontrib><creatorcontrib>Barton, Craig V M</creatorcontrib><creatorcontrib>Ellsworth, David S</creatorcontrib><creatorcontrib>Gracia, Carles</creatorcontrib><creatorcontrib>Tissue, David T</creatorcontrib><creatorcontrib>Tjoelker, Mark G</creatorcontrib><creatorcontrib>Sabaté, Santi</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nadal-Sala, Daniel</au><au>Medlyn, Belinda E</au><au>Ruehr, Nadine K</au><au>Barton, Craig V M</au><au>Ellsworth, David S</au><au>Gracia, Carles</au><au>Tissue, David T</au><au>Tjoelker, Mark G</au><au>Sabaté, Santi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing aridity will not offset CO 2 fertilization in fast-growing eucalypts with access to deep soil water</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2021-06</date><risdate>2021</risdate><volume>27</volume><issue>12</issue><spage>2970</spage><epage>2990</epage><pages>2970-2990</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Rising atmospheric [CO ] (C ) generally enhances tree growth if nutrients are not limiting. However, reduced water availability and elevated evaporative demand may offset such fertilization. Trees with access to deep soil water may be able to mitigate such stresses and respond more positively to C . Here, we sought to evaluate how increased vapor pressure deficit and reduced precipitation are likely to modify the impact of elevated C (eC ) on tree productivity in an Australian Eucalyptus saligna Sm. plantation with access to deep soil water. We parameterized a forest growth simulation model (GOTILWA+) using data from two field experiments on E. saligna: a 2-year whole-tree chamber experiment with factorial C (ambient =380, elevated =620 μmol mol ) and watering treatments, and a 10-year stand-scale irrigation experiment. Model evaluation showed that GOTILWA+ can capture the responses of canopy C uptake to (1) rising vapor pressure deficit (D) under both C treatments; (2) alterations in tree water uptake from shallow and deep soil layers during soil dry-down; and (3) the impact of irrigation on tree growth. Simulations suggest that increasing C up to 700 μmol mol alone would result in a 33% increase in annual gross primary production (GPP) and a 62% increase in biomass over 10 years. However, a combined 48% increase in D and a 20% reduction in precipitation would halve these values. Our simulations identify high D conditions as a key limiting factor for GPP. They also suggest that rising C will compensate for increasing aridity limitations in E. saligna trees with access to deep soil water under non-nutrient limiting conditions, thereby reducing the negative impacts of global warming upon this eucalypt species. Simulation models not accounting for water sources available to deep-rooting trees are likely to overestimate aridity impacts on forest productivity and C stocks.</abstract><cop>England</cop><pmid>33694242</pmid><doi>10.1111/gcb.15590</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5728-9827</orcidid><orcidid>https://orcid.org/0000-0002-0935-6201</orcidid><orcidid>https://orcid.org/0000-0002-8497-2047</orcidid><orcidid>https://orcid.org/0000-0003-4607-5238</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2021-06, Vol.27 (12), p.2970-2990
issn 1354-1013
1365-2486
language eng
recordid cdi_crossref_primary_10_1111_gcb_15590
source Wiley Journals
title Increasing aridity will not offset CO 2 fertilization in fast-growing eucalypts with access to deep soil water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20aridity%20will%20not%20offset%20CO%202%20fertilization%20in%20fast-growing%20eucalypts%20with%20access%20to%20deep%20soil%20water&rft.jtitle=Global%20change%20biology&rft.au=Nadal-Sala,%20Daniel&rft.date=2021-06&rft.volume=27&rft.issue=12&rft.spage=2970&rft.epage=2990&rft.pages=2970-2990&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.15590&rft_dat=%3Cpubmed_cross%3E33694242%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33694242&rfr_iscdi=true