Artificial intelligence for detecting electrolyte imbalance using electrocardiography

Introduction The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of noninvasive electrocardiology 2021-05, Vol.26 (3), p.e12839-n/a, Article 12839
Hauptverfasser: Kwon, Joon‐myoung, Jung, Min‐Seung, Kim, Kyung‐Hee, Jo, Yong‐Yeon, Shin, Jae‐Hyun, Cho, Yong‐Hyeon, Lee, Yoon‐Ji, Ban, Jang‐Hyeon, Jeon, Ki‐Hyun, Lee, Soo Youn, Park, Jinsik, Oh, Byung‐Hee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e12839
container_title Annals of noninvasive electrocardiology
container_volume 26
creator Kwon, Joon‐myoung
Jung, Min‐Seung
Kim, Kyung‐Hee
Jo, Yong‐Yeon
Shin, Jae‐Hyun
Cho, Yong‐Hyeon
Lee, Yoon‐Ji
Ban, Jang‐Hyeon
Jeon, Ki‐Hyun
Lee, Soo Youn
Park, Jinsik
Oh, Byung‐Hee
description Introduction The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study. Methods and Results This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12‐lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance. Conclusion The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.
doi_str_mv 10.1111/anec.12839
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_anec_12839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_386a234b95b248d8a2334ef8cb560a9b</doaj_id><sourcerecordid>2533662708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5149-effe7178205d7eb11722431eb11f99d2813bc1d2adef9924320b3dc710af8e6f3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEoqVw4QOgSFwQKMX_EjuXSqtVgUoVXKjUm-U449SrbLw4Dmi_PZNmWbUcEL547PnN07Nflr2m5Jzi-mgGsOeUKV4_yU5pKVghpLh9ijVRrJCM3J5kL8ZxQwhjgsnn2QnnktaUl6fZzSom77z1ps_9kKDvfQeDhdyFmLeQwCY_dDn0WMTQ7xPkftuY3szMND7oWRNbH7podnf7l9kzZ_oRXh32s-zm0-X39Zfi-tvnq_XqurAlFXUBzoGkUjFSthIaSiUa5HSuXF23TFHeWNoy0wKescVIw1srKTFOQeX4WXa16LbBbPQu-q2Jex2M1_cXIXba4PtsD5qryjAumrpsmFCtwgMX4JRtyoqYukGti0VrNzVbaC0MKZr-kejjzuDvdBd-akUrga9BgXcHgRh-TDAmvfWjxR_FfMI0alYSKpRQtET07V_oJkxxwK9CivOqYpIopN4vlI1hHCO4oxlK9Jy8npPX98kj_Oah_SP6J2oEPizAL2iCG62fYz5ihJCKKVUpjhWhSKv_p9c-meTDsA7TkHCUHkZ9D_t_eNarr5frxf1v19La9A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533662708</pqid></control><display><type>article</type><title>Artificial intelligence for detecting electrolyte imbalance using electrocardiography</title><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Kwon, Joon‐myoung ; Jung, Min‐Seung ; Kim, Kyung‐Hee ; Jo, Yong‐Yeon ; Shin, Jae‐Hyun ; Cho, Yong‐Hyeon ; Lee, Yoon‐Ji ; Ban, Jang‐Hyeon ; Jeon, Ki‐Hyun ; Lee, Soo Youn ; Park, Jinsik ; Oh, Byung‐Hee</creator><creatorcontrib>Kwon, Joon‐myoung ; Jung, Min‐Seung ; Kim, Kyung‐Hee ; Jo, Yong‐Yeon ; Shin, Jae‐Hyun ; Cho, Yong‐Hyeon ; Lee, Yoon‐Ji ; Ban, Jang‐Hyeon ; Jeon, Ki‐Hyun ; Lee, Soo Youn ; Park, Jinsik ; Oh, Byung‐Hee</creatorcontrib><description>Introduction The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study. Methods and Results This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12‐lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance. Conclusion The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.</description><identifier>ISSN: 1082-720X</identifier><identifier>EISSN: 1542-474X</identifier><identifier>DOI: 10.1111/anec.12839</identifier><identifier>PMID: 33719135</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Artificial intelligence ; Cardiac &amp; Cardiovascular Systems ; Cardiovascular System &amp; Cardiology ; Deep learning ; EKG ; Electrocardiography ; Electrolytes ; Hypercalcemia ; Hyperkalemia ; Hypernatremia ; Hypocalcemia ; Hypokalemia ; Hyponatremia ; Life Sciences &amp; Biomedicine ; Metabolic disorders ; Monitoring ; New Technologies ; P waves ; Patients ; Science &amp; Technology ; Telemedicine</subject><ispartof>Annals of noninvasive electrocardiology, 2021-05, Vol.26 (3), p.e12839-n/a, Article 12839</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC</rights><rights>2020 The Authors. Annals of Noninvasive Electrocardiology published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000628868300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5149-effe7178205d7eb11722431eb11f99d2813bc1d2adef9924320b3dc710af8e6f3</citedby><cites>FETCH-LOGICAL-c5149-effe7178205d7eb11722431eb11f99d2813bc1d2adef9924320b3dc710af8e6f3</cites><orcidid>0000-0001-6754-1010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164149/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164149/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,2115,11567,27929,27930,39263,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33719135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Joon‐myoung</creatorcontrib><creatorcontrib>Jung, Min‐Seung</creatorcontrib><creatorcontrib>Kim, Kyung‐Hee</creatorcontrib><creatorcontrib>Jo, Yong‐Yeon</creatorcontrib><creatorcontrib>Shin, Jae‐Hyun</creatorcontrib><creatorcontrib>Cho, Yong‐Hyeon</creatorcontrib><creatorcontrib>Lee, Yoon‐Ji</creatorcontrib><creatorcontrib>Ban, Jang‐Hyeon</creatorcontrib><creatorcontrib>Jeon, Ki‐Hyun</creatorcontrib><creatorcontrib>Lee, Soo Youn</creatorcontrib><creatorcontrib>Park, Jinsik</creatorcontrib><creatorcontrib>Oh, Byung‐Hee</creatorcontrib><title>Artificial intelligence for detecting electrolyte imbalance using electrocardiography</title><title>Annals of noninvasive electrocardiology</title><addtitle>ANN NONINVAS ELECTRO</addtitle><addtitle>Ann Noninvasive Electrocardiol</addtitle><description>Introduction The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study. Methods and Results This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12‐lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance. Conclusion The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.</description><subject>Artificial intelligence</subject><subject>Cardiac &amp; Cardiovascular Systems</subject><subject>Cardiovascular System &amp; Cardiology</subject><subject>Deep learning</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Electrolytes</subject><subject>Hypercalcemia</subject><subject>Hyperkalemia</subject><subject>Hypernatremia</subject><subject>Hypocalcemia</subject><subject>Hypokalemia</subject><subject>Hyponatremia</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Metabolic disorders</subject><subject>Monitoring</subject><subject>New Technologies</subject><subject>P waves</subject><subject>Patients</subject><subject>Science &amp; Technology</subject><subject>Telemedicine</subject><issn>1082-720X</issn><issn>1542-474X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9v1DAQxSMEoqVw4QOgSFwQKMX_EjuXSqtVgUoVXKjUm-U449SrbLw4Dmi_PZNmWbUcEL547PnN07Nflr2m5Jzi-mgGsOeUKV4_yU5pKVghpLh9ijVRrJCM3J5kL8ZxQwhjgsnn2QnnktaUl6fZzSom77z1ps_9kKDvfQeDhdyFmLeQwCY_dDn0WMTQ7xPkftuY3szMND7oWRNbH7podnf7l9kzZ_oRXh32s-zm0-X39Zfi-tvnq_XqurAlFXUBzoGkUjFSthIaSiUa5HSuXF23TFHeWNoy0wKescVIw1srKTFOQeX4WXa16LbBbPQu-q2Jex2M1_cXIXba4PtsD5qryjAumrpsmFCtwgMX4JRtyoqYukGti0VrNzVbaC0MKZr-kejjzuDvdBd-akUrga9BgXcHgRh-TDAmvfWjxR_FfMI0alYSKpRQtET07V_oJkxxwK9CivOqYpIopN4vlI1hHCO4oxlK9Jy8npPX98kj_Oah_SP6J2oEPizAL2iCG62fYz5ihJCKKVUpjhWhSKv_p9c-meTDsA7TkHCUHkZ9D_t_eNarr5frxf1v19La9A</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Kwon, Joon‐myoung</creator><creator>Jung, Min‐Seung</creator><creator>Kim, Kyung‐Hee</creator><creator>Jo, Yong‐Yeon</creator><creator>Shin, Jae‐Hyun</creator><creator>Cho, Yong‐Hyeon</creator><creator>Lee, Yoon‐Ji</creator><creator>Ban, Jang‐Hyeon</creator><creator>Jeon, Ki‐Hyun</creator><creator>Lee, Soo Youn</creator><creator>Park, Jinsik</creator><creator>Oh, Byung‐Hee</creator><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6754-1010</orcidid></search><sort><creationdate>202105</creationdate><title>Artificial intelligence for detecting electrolyte imbalance using electrocardiography</title><author>Kwon, Joon‐myoung ; Jung, Min‐Seung ; Kim, Kyung‐Hee ; Jo, Yong‐Yeon ; Shin, Jae‐Hyun ; Cho, Yong‐Hyeon ; Lee, Yoon‐Ji ; Ban, Jang‐Hyeon ; Jeon, Ki‐Hyun ; Lee, Soo Youn ; Park, Jinsik ; Oh, Byung‐Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5149-effe7178205d7eb11722431eb11f99d2813bc1d2adef9924320b3dc710af8e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Cardiac &amp; Cardiovascular Systems</topic><topic>Cardiovascular System &amp; Cardiology</topic><topic>Deep learning</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Electrolytes</topic><topic>Hypercalcemia</topic><topic>Hyperkalemia</topic><topic>Hypernatremia</topic><topic>Hypocalcemia</topic><topic>Hypokalemia</topic><topic>Hyponatremia</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Metabolic disorders</topic><topic>Monitoring</topic><topic>New Technologies</topic><topic>P waves</topic><topic>Patients</topic><topic>Science &amp; Technology</topic><topic>Telemedicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Joon‐myoung</creatorcontrib><creatorcontrib>Jung, Min‐Seung</creatorcontrib><creatorcontrib>Kim, Kyung‐Hee</creatorcontrib><creatorcontrib>Jo, Yong‐Yeon</creatorcontrib><creatorcontrib>Shin, Jae‐Hyun</creatorcontrib><creatorcontrib>Cho, Yong‐Hyeon</creatorcontrib><creatorcontrib>Lee, Yoon‐Ji</creatorcontrib><creatorcontrib>Ban, Jang‐Hyeon</creatorcontrib><creatorcontrib>Jeon, Ki‐Hyun</creatorcontrib><creatorcontrib>Lee, Soo Youn</creatorcontrib><creatorcontrib>Park, Jinsik</creatorcontrib><creatorcontrib>Oh, Byung‐Hee</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Annals of noninvasive electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Joon‐myoung</au><au>Jung, Min‐Seung</au><au>Kim, Kyung‐Hee</au><au>Jo, Yong‐Yeon</au><au>Shin, Jae‐Hyun</au><au>Cho, Yong‐Hyeon</au><au>Lee, Yoon‐Ji</au><au>Ban, Jang‐Hyeon</au><au>Jeon, Ki‐Hyun</au><au>Lee, Soo Youn</au><au>Park, Jinsik</au><au>Oh, Byung‐Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence for detecting electrolyte imbalance using electrocardiography</atitle><jtitle>Annals of noninvasive electrocardiology</jtitle><stitle>ANN NONINVAS ELECTRO</stitle><addtitle>Ann Noninvasive Electrocardiol</addtitle><date>2021-05</date><risdate>2021</risdate><volume>26</volume><issue>3</issue><spage>e12839</spage><epage>n/a</epage><pages>e12839-n/a</pages><artnum>12839</artnum><issn>1082-720X</issn><eissn>1542-474X</eissn><abstract>Introduction The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study. Methods and Results This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12‐lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance. Conclusion The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>33719135</pmid><doi>10.1111/anec.12839</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6754-1010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1082-720X
ispartof Annals of noninvasive electrocardiology, 2021-05, Vol.26 (3), p.e12839-n/a, Article 12839
issn 1082-720X
1542-474X
language eng
recordid cdi_crossref_primary_10_1111_anec_12839
source Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); PubMed Central
subjects Artificial intelligence
Cardiac & Cardiovascular Systems
Cardiovascular System & Cardiology
Deep learning
EKG
Electrocardiography
Electrolytes
Hypercalcemia
Hyperkalemia
Hypernatremia
Hypocalcemia
Hypokalemia
Hyponatremia
Life Sciences & Biomedicine
Metabolic disorders
Monitoring
New Technologies
P waves
Patients
Science & Technology
Telemedicine
title Artificial intelligence for detecting electrolyte imbalance using electrocardiography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20for%20detecting%20electrolyte%20imbalance%20using%20electrocardiography&rft.jtitle=Annals%20of%20noninvasive%20electrocardiology&rft.au=Kwon,%20Joon%E2%80%90myoung&rft.date=2021-05&rft.volume=26&rft.issue=3&rft.spage=e12839&rft.epage=n/a&rft.pages=e12839-n/a&rft.artnum=12839&rft.issn=1082-720X&rft.eissn=1542-474X&rft_id=info:doi/10.1111/anec.12839&rft_dat=%3Cproquest_cross%3E2533662708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533662708&rft_id=info:pmid/33719135&rft_doaj_id=oai_doaj_org_article_386a234b95b248d8a2334ef8cb560a9b&rfr_iscdi=true