Artificial intelligence for detecting electrolyte imbalance using electrocardiography
Introduction The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography...
Gespeichert in:
Veröffentlicht in: | Annals of noninvasive electrocardiology 2021-05, Vol.26 (3), p.e12839-n/a, Article 12839 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e12839 |
container_title | Annals of noninvasive electrocardiology |
container_volume | 26 |
creator | Kwon, Joon‐myoung Jung, Min‐Seung Kim, Kyung‐Hee Jo, Yong‐Yeon Shin, Jae‐Hyun Cho, Yong‐Hyeon Lee, Yoon‐Ji Ban, Jang‐Hyeon Jeon, Ki‐Hyun Lee, Soo Youn Park, Jinsik Oh, Byung‐Hee |
description | Introduction
The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study.
Methods and Results
This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12‐lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance.
Conclusion
The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis. |
doi_str_mv | 10.1111/anec.12839 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_anec_12839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_386a234b95b248d8a2334ef8cb560a9b</doaj_id><sourcerecordid>2533662708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5149-effe7178205d7eb11722431eb11f99d2813bc1d2adef9924320b3dc710af8e6f3</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxSMEoqVw4QOgSFwQKMX_EjuXSqtVgUoVXKjUm-U449SrbLw4Dmi_PZNmWbUcEL547PnN07Nflr2m5Jzi-mgGsOeUKV4_yU5pKVghpLh9ijVRrJCM3J5kL8ZxQwhjgsnn2QnnktaUl6fZzSom77z1ps_9kKDvfQeDhdyFmLeQwCY_dDn0WMTQ7xPkftuY3szMND7oWRNbH7podnf7l9kzZ_oRXh32s-zm0-X39Zfi-tvnq_XqurAlFXUBzoGkUjFSthIaSiUa5HSuXF23TFHeWNoy0wKescVIw1srKTFOQeX4WXa16LbBbPQu-q2Jex2M1_cXIXba4PtsD5qryjAumrpsmFCtwgMX4JRtyoqYukGti0VrNzVbaC0MKZr-kejjzuDvdBd-akUrga9BgXcHgRh-TDAmvfWjxR_FfMI0alYSKpRQtET07V_oJkxxwK9CivOqYpIopN4vlI1hHCO4oxlK9Jy8npPX98kj_Oah_SP6J2oEPizAL2iCG62fYz5ihJCKKVUpjhWhSKv_p9c-meTDsA7TkHCUHkZ9D_t_eNarr5frxf1v19La9A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2533662708</pqid></control><display><type>article</type><title>Artificial intelligence for detecting electrolyte imbalance using electrocardiography</title><source>Wiley Online Library - AutoHoldings Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Kwon, Joon‐myoung ; Jung, Min‐Seung ; Kim, Kyung‐Hee ; Jo, Yong‐Yeon ; Shin, Jae‐Hyun ; Cho, Yong‐Hyeon ; Lee, Yoon‐Ji ; Ban, Jang‐Hyeon ; Jeon, Ki‐Hyun ; Lee, Soo Youn ; Park, Jinsik ; Oh, Byung‐Hee</creator><creatorcontrib>Kwon, Joon‐myoung ; Jung, Min‐Seung ; Kim, Kyung‐Hee ; Jo, Yong‐Yeon ; Shin, Jae‐Hyun ; Cho, Yong‐Hyeon ; Lee, Yoon‐Ji ; Ban, Jang‐Hyeon ; Jeon, Ki‐Hyun ; Lee, Soo Youn ; Park, Jinsik ; Oh, Byung‐Hee</creatorcontrib><description>Introduction
The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study.
Methods and Results
This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12‐lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance.
Conclusion
The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.</description><identifier>ISSN: 1082-720X</identifier><identifier>EISSN: 1542-474X</identifier><identifier>DOI: 10.1111/anec.12839</identifier><identifier>PMID: 33719135</identifier><language>eng</language><publisher>HOBOKEN: Wiley</publisher><subject>Artificial intelligence ; Cardiac & Cardiovascular Systems ; Cardiovascular System & Cardiology ; Deep learning ; EKG ; Electrocardiography ; Electrolytes ; Hypercalcemia ; Hyperkalemia ; Hypernatremia ; Hypocalcemia ; Hypokalemia ; Hyponatremia ; Life Sciences & Biomedicine ; Metabolic disorders ; Monitoring ; New Technologies ; P waves ; Patients ; Science & Technology ; Telemedicine</subject><ispartof>Annals of noninvasive electrocardiology, 2021-05, Vol.26 (3), p.e12839-n/a, Article 12839</ispartof><rights>2020 The Authors. published by Wiley Periodicals LLC</rights><rights>2020 The Authors. Annals of Noninvasive Electrocardiology published by Wiley Periodicals LLC.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>31</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000628868300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c5149-effe7178205d7eb11722431eb11f99d2813bc1d2adef9924320b3dc710af8e6f3</citedby><cites>FETCH-LOGICAL-c5149-effe7178205d7eb11722431eb11f99d2813bc1d2adef9924320b3dc710af8e6f3</cites><orcidid>0000-0001-6754-1010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164149/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8164149/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,2103,2115,11567,27929,27930,39263,45579,45580,46057,46481,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33719135$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwon, Joon‐myoung</creatorcontrib><creatorcontrib>Jung, Min‐Seung</creatorcontrib><creatorcontrib>Kim, Kyung‐Hee</creatorcontrib><creatorcontrib>Jo, Yong‐Yeon</creatorcontrib><creatorcontrib>Shin, Jae‐Hyun</creatorcontrib><creatorcontrib>Cho, Yong‐Hyeon</creatorcontrib><creatorcontrib>Lee, Yoon‐Ji</creatorcontrib><creatorcontrib>Ban, Jang‐Hyeon</creatorcontrib><creatorcontrib>Jeon, Ki‐Hyun</creatorcontrib><creatorcontrib>Lee, Soo Youn</creatorcontrib><creatorcontrib>Park, Jinsik</creatorcontrib><creatorcontrib>Oh, Byung‐Hee</creatorcontrib><title>Artificial intelligence for detecting electrolyte imbalance using electrocardiography</title><title>Annals of noninvasive electrocardiology</title><addtitle>ANN NONINVAS ELECTRO</addtitle><addtitle>Ann Noninvasive Electrocardiol</addtitle><description>Introduction
The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study.
Methods and Results
This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12‐lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance.
Conclusion
The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.</description><subject>Artificial intelligence</subject><subject>Cardiac & Cardiovascular Systems</subject><subject>Cardiovascular System & Cardiology</subject><subject>Deep learning</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Electrolytes</subject><subject>Hypercalcemia</subject><subject>Hyperkalemia</subject><subject>Hypernatremia</subject><subject>Hypocalcemia</subject><subject>Hypokalemia</subject><subject>Hyponatremia</subject><subject>Life Sciences & Biomedicine</subject><subject>Metabolic disorders</subject><subject>Monitoring</subject><subject>New Technologies</subject><subject>P waves</subject><subject>Patients</subject><subject>Science & Technology</subject><subject>Telemedicine</subject><issn>1082-720X</issn><issn>1542-474X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU9v1DAQxSMEoqVw4QOgSFwQKMX_EjuXSqtVgUoVXKjUm-U449SrbLw4Dmi_PZNmWbUcEL547PnN07Nflr2m5Jzi-mgGsOeUKV4_yU5pKVghpLh9ijVRrJCM3J5kL8ZxQwhjgsnn2QnnktaUl6fZzSom77z1ps_9kKDvfQeDhdyFmLeQwCY_dDn0WMTQ7xPkftuY3szMND7oWRNbH7podnf7l9kzZ_oRXh32s-zm0-X39Zfi-tvnq_XqurAlFXUBzoGkUjFSthIaSiUa5HSuXF23TFHeWNoy0wKescVIw1srKTFOQeX4WXa16LbBbPQu-q2Jex2M1_cXIXba4PtsD5qryjAumrpsmFCtwgMX4JRtyoqYukGti0VrNzVbaC0MKZr-kejjzuDvdBd-akUrga9BgXcHgRh-TDAmvfWjxR_FfMI0alYSKpRQtET07V_oJkxxwK9CivOqYpIopN4vlI1hHCO4oxlK9Jy8npPX98kj_Oah_SP6J2oEPizAL2iCG62fYz5ihJCKKVUpjhWhSKv_p9c-meTDsA7TkHCUHkZ9D_t_eNarr5frxf1v19La9A</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Kwon, Joon‐myoung</creator><creator>Jung, Min‐Seung</creator><creator>Kim, Kyung‐Hee</creator><creator>Jo, Yong‐Yeon</creator><creator>Shin, Jae‐Hyun</creator><creator>Cho, Yong‐Hyeon</creator><creator>Lee, Yoon‐Ji</creator><creator>Ban, Jang‐Hyeon</creator><creator>Jeon, Ki‐Hyun</creator><creator>Lee, Soo Youn</creator><creator>Park, Jinsik</creator><creator>Oh, Byung‐Hee</creator><general>Wiley</general><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6754-1010</orcidid></search><sort><creationdate>202105</creationdate><title>Artificial intelligence for detecting electrolyte imbalance using electrocardiography</title><author>Kwon, Joon‐myoung ; Jung, Min‐Seung ; Kim, Kyung‐Hee ; Jo, Yong‐Yeon ; Shin, Jae‐Hyun ; Cho, Yong‐Hyeon ; Lee, Yoon‐Ji ; Ban, Jang‐Hyeon ; Jeon, Ki‐Hyun ; Lee, Soo Youn ; Park, Jinsik ; Oh, Byung‐Hee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5149-effe7178205d7eb11722431eb11f99d2813bc1d2adef9924320b3dc710af8e6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Cardiac & Cardiovascular Systems</topic><topic>Cardiovascular System & Cardiology</topic><topic>Deep learning</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Electrolytes</topic><topic>Hypercalcemia</topic><topic>Hyperkalemia</topic><topic>Hypernatremia</topic><topic>Hypocalcemia</topic><topic>Hypokalemia</topic><topic>Hyponatremia</topic><topic>Life Sciences & Biomedicine</topic><topic>Metabolic disorders</topic><topic>Monitoring</topic><topic>New Technologies</topic><topic>P waves</topic><topic>Patients</topic><topic>Science & Technology</topic><topic>Telemedicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwon, Joon‐myoung</creatorcontrib><creatorcontrib>Jung, Min‐Seung</creatorcontrib><creatorcontrib>Kim, Kyung‐Hee</creatorcontrib><creatorcontrib>Jo, Yong‐Yeon</creatorcontrib><creatorcontrib>Shin, Jae‐Hyun</creatorcontrib><creatorcontrib>Cho, Yong‐Hyeon</creatorcontrib><creatorcontrib>Lee, Yoon‐Ji</creatorcontrib><creatorcontrib>Ban, Jang‐Hyeon</creatorcontrib><creatorcontrib>Jeon, Ki‐Hyun</creatorcontrib><creatorcontrib>Lee, Soo Youn</creatorcontrib><creatorcontrib>Park, Jinsik</creatorcontrib><creatorcontrib>Oh, Byung‐Hee</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Annals of noninvasive electrocardiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwon, Joon‐myoung</au><au>Jung, Min‐Seung</au><au>Kim, Kyung‐Hee</au><au>Jo, Yong‐Yeon</au><au>Shin, Jae‐Hyun</au><au>Cho, Yong‐Hyeon</au><au>Lee, Yoon‐Ji</au><au>Ban, Jang‐Hyeon</au><au>Jeon, Ki‐Hyun</au><au>Lee, Soo Youn</au><au>Park, Jinsik</au><au>Oh, Byung‐Hee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence for detecting electrolyte imbalance using electrocardiography</atitle><jtitle>Annals of noninvasive electrocardiology</jtitle><stitle>ANN NONINVAS ELECTRO</stitle><addtitle>Ann Noninvasive Electrocardiol</addtitle><date>2021-05</date><risdate>2021</risdate><volume>26</volume><issue>3</issue><spage>e12839</spage><epage>n/a</epage><pages>e12839-n/a</pages><artnum>12839</artnum><issn>1082-720X</issn><eissn>1542-474X</eissn><abstract>Introduction
The detection and monitoring of electrolyte imbalance is essential for appropriate management of many metabolic diseases; however, there is no tool that detects such imbalances reliably and noninvasively. In this study, we developed a deep learning model (DLM) using electrocardiography (ECG) for detecting electrolyte imbalance and validated its performance in a multicenter study.
Methods and Results
This retrospective cohort study included two hospitals: 92,140 patients who underwent a laboratory electrolyte examination and an ECG within 30 min were included in this study. A DLM was developed using 83,449 ECGs of 48,356 patients; the internal validation included 12,091 ECGs of 12,091 patients. We conducted an external validation with 31,693 ECGs of 31,693 patients from another hospital, and the result was electrolyte imbalance detection. During internal, the area under the receiving operating characteristic curve (AUC) of a DLM using a 12‐lead ECG for detecting hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.945, 0.866, 0.944, 0.885, 0.905, and 0.901, respectively. The values during external validation of the AUC of hyperkalemia, hypokalemia, hypernatremia, hyponatremia, hypercalcemia, and hypocalcemia were 0.873, 0.857, 0.839, 0.856, 0.831, and 0.813 respectively. The DLM helped to visualize the important ECG region for detecting each electrolyte imbalance, and it showed how the P wave, QRS complex, or T wave differs in importance in detecting each electrolyte imbalance.
Conclusion
The proposed DLM demonstrated high performance in detecting electrolyte imbalance. These results suggest that a DLM can be used for detecting and monitoring electrolyte imbalance using ECG on a daily basis.</abstract><cop>HOBOKEN</cop><pub>Wiley</pub><pmid>33719135</pmid><doi>10.1111/anec.12839</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6754-1010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1082-720X |
ispartof | Annals of noninvasive electrocardiology, 2021-05, Vol.26 (3), p.e12839-n/a, Article 12839 |
issn | 1082-720X 1542-474X |
language | eng |
recordid | cdi_crossref_primary_10_1111_anec_12839 |
source | Wiley Online Library - AutoHoldings Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | Artificial intelligence Cardiac & Cardiovascular Systems Cardiovascular System & Cardiology Deep learning EKG Electrocardiography Electrolytes Hypercalcemia Hyperkalemia Hypernatremia Hypocalcemia Hypokalemia Hyponatremia Life Sciences & Biomedicine Metabolic disorders Monitoring New Technologies P waves Patients Science & Technology Telemedicine |
title | Artificial intelligence for detecting electrolyte imbalance using electrocardiography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T08%3A41%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20for%20detecting%20electrolyte%20imbalance%20using%20electrocardiography&rft.jtitle=Annals%20of%20noninvasive%20electrocardiology&rft.au=Kwon,%20Joon%E2%80%90myoung&rft.date=2021-05&rft.volume=26&rft.issue=3&rft.spage=e12839&rft.epage=n/a&rft.pages=e12839-n/a&rft.artnum=12839&rft.issn=1082-720X&rft.eissn=1542-474X&rft_id=info:doi/10.1111/anec.12839&rft_dat=%3Cproquest_cross%3E2533662708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2533662708&rft_id=info:pmid/33719135&rft_doaj_id=oai_doaj_org_article_386a234b95b248d8a2334ef8cb560a9b&rfr_iscdi=true |