The Necessity of Moving Averages in Dynamic Linear Regression Models

Consensus from the debate over lagged dependent variables in dynamic linear regression models advises that including enough lags of the dependent and independent variables will fully model autocorrelation in the error term. But this approach fails to account for a long‐neglected source of autocorrel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of political science 2025-01, Vol.69 (1), p.176-193
Hauptverfasser: Vande Kamp, Garrett N., Jordan, Soren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 1
container_start_page 176
container_title American journal of political science
container_volume 69
creator Vande Kamp, Garrett N.
Jordan, Soren
description Consensus from the debate over lagged dependent variables in dynamic linear regression models advises that including enough lags of the dependent and independent variables will fully model autocorrelation in the error term. But this approach fails to account for a long‐neglected source of autocorrelation in the error term—moving averages—which cannot be represented with a finite number of lags. Approximating moving averages results in either inconsistent or inefficient estimates of relevant quantities of interest, a claim demonstrated here via Monte Carlo simulations and three empirical demonstrations. Ultimately, we argue that moving averages should be a standard part of dynamic analysis and offer guidance for incorporating them into various modeling strategies.
doi_str_mv 10.1111/ajps.12825
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_ajps_12825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154713625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2965-5e2d3243aec31b7db14f4daeb83e51a0d20dd4fdd53f6669e12442c63379cd263</originalsourceid><addsrcrecordid>eNp90EtPAjEQB_DGaCKiFz9BE28mi30veyQgPrI-onhuSjuLJbCLLWD221tcz_YyafKbmcwfoUtKBjS9G7PcxAFlQyaPUI9KQTJZkPwY9QgpWCaHkp-isxiXJP1FwXtoMvsE_AwWYvTbFjcVfmr2vl7g0R6CWUDEvsaTtjZrb3HpazABv8EiHHxTJ-xgFc_RSWVWES7-ah99TG9n4_usfLl7GI_KzLJCyUwCc5wJbsByOs_dnIpKOAPzIQdJDXGMOCcq5ySvlFIFUCYEs4rzvLCOKd5HV93cTWi-dhC3etnsQp1Wap6OzSlXTCZ13SkbmhgDVHoT_NqEVlOiDynpQ0r6N6WEaYe__Qraf6QePb6-dz0_wvFpIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154713625</pqid></control><display><type>article</type><title>The Necessity of Moving Averages in Dynamic Linear Regression Models</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Worldwide Political Science Abstracts</source><creator>Vande Kamp, Garrett N. ; Jordan, Soren</creator><creatorcontrib>Vande Kamp, Garrett N. ; Jordan, Soren</creatorcontrib><description>Consensus from the debate over lagged dependent variables in dynamic linear regression models advises that including enough lags of the dependent and independent variables will fully model autocorrelation in the error term. But this approach fails to account for a long‐neglected source of autocorrelation in the error term—moving averages—which cannot be represented with a finite number of lags. Approximating moving averages results in either inconsistent or inefficient estimates of relevant quantities of interest, a claim demonstrated here via Monte Carlo simulations and three empirical demonstrations. Ultimately, we argue that moving averages should be a standard part of dynamic analysis and offer guidance for incorporating them into various modeling strategies.</description><identifier>ISSN: 0092-5853</identifier><identifier>EISSN: 1540-5907</identifier><identifier>DOI: 10.1111/ajps.12825</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Averages ; Consensus ; Regression analysis ; Variables</subject><ispartof>American journal of political science, 2025-01, Vol.69 (1), p.176-193</ispartof><rights>2023 The Authors. published by Wiley Periodicals LLC on behalf of Midwest Political Science Association.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2965-5e2d3243aec31b7db14f4daeb83e51a0d20dd4fdd53f6669e12442c63379cd263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fajps.12825$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fajps.12825$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Vande Kamp, Garrett N.</creatorcontrib><creatorcontrib>Jordan, Soren</creatorcontrib><title>The Necessity of Moving Averages in Dynamic Linear Regression Models</title><title>American journal of political science</title><description>Consensus from the debate over lagged dependent variables in dynamic linear regression models advises that including enough lags of the dependent and independent variables will fully model autocorrelation in the error term. But this approach fails to account for a long‐neglected source of autocorrelation in the error term—moving averages—which cannot be represented with a finite number of lags. Approximating moving averages results in either inconsistent or inefficient estimates of relevant quantities of interest, a claim demonstrated here via Monte Carlo simulations and three empirical demonstrations. Ultimately, we argue that moving averages should be a standard part of dynamic analysis and offer guidance for incorporating them into various modeling strategies.</description><subject>Averages</subject><subject>Consensus</subject><subject>Regression analysis</subject><subject>Variables</subject><issn>0092-5853</issn><issn>1540-5907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>7UB</sourceid><recordid>eNp90EtPAjEQB_DGaCKiFz9BE28mi30veyQgPrI-onhuSjuLJbCLLWD221tcz_YyafKbmcwfoUtKBjS9G7PcxAFlQyaPUI9KQTJZkPwY9QgpWCaHkp-isxiXJP1FwXtoMvsE_AwWYvTbFjcVfmr2vl7g0R6CWUDEvsaTtjZrb3HpazABv8EiHHxTJ-xgFc_RSWVWES7-ah99TG9n4_usfLl7GI_KzLJCyUwCc5wJbsByOs_dnIpKOAPzIQdJDXGMOCcq5ySvlFIFUCYEs4rzvLCOKd5HV93cTWi-dhC3etnsQp1Wap6OzSlXTCZ13SkbmhgDVHoT_NqEVlOiDynpQ0r6N6WEaYe__Qraf6QePb6-dz0_wvFpIA</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Vande Kamp, Garrett N.</creator><creator>Jordan, Soren</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UB</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202501</creationdate><title>The Necessity of Moving Averages in Dynamic Linear Regression Models</title><author>Vande Kamp, Garrett N. ; Jordan, Soren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2965-5e2d3243aec31b7db14f4daeb83e51a0d20dd4fdd53f6669e12442c63379cd263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Averages</topic><topic>Consensus</topic><topic>Regression analysis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vande Kamp, Garrett N.</creatorcontrib><creatorcontrib>Jordan, Soren</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Worldwide Political Science Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>American journal of political science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vande Kamp, Garrett N.</au><au>Jordan, Soren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Necessity of Moving Averages in Dynamic Linear Regression Models</atitle><jtitle>American journal of political science</jtitle><date>2025-01</date><risdate>2025</risdate><volume>69</volume><issue>1</issue><spage>176</spage><epage>193</epage><pages>176-193</pages><issn>0092-5853</issn><eissn>1540-5907</eissn><abstract>Consensus from the debate over lagged dependent variables in dynamic linear regression models advises that including enough lags of the dependent and independent variables will fully model autocorrelation in the error term. But this approach fails to account for a long‐neglected source of autocorrelation in the error term—moving averages—which cannot be represented with a finite number of lags. Approximating moving averages results in either inconsistent or inefficient estimates of relevant quantities of interest, a claim demonstrated here via Monte Carlo simulations and three empirical demonstrations. Ultimately, we argue that moving averages should be a standard part of dynamic analysis and offer guidance for incorporating them into various modeling strategies.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/ajps.12825</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-5853
ispartof American journal of political science, 2025-01, Vol.69 (1), p.176-193
issn 0092-5853
1540-5907
language eng
recordid cdi_crossref_primary_10_1111_ajps_12825
source Wiley Online Library Journals Frontfile Complete; Worldwide Political Science Abstracts
subjects Averages
Consensus
Regression analysis
Variables
title The Necessity of Moving Averages in Dynamic Linear Regression Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Necessity%20of%20Moving%20Averages%20in%20Dynamic%20Linear%20Regression%20Models&rft.jtitle=American%20journal%20of%20political%20science&rft.au=Vande%20Kamp,%20Garrett%20N.&rft.date=2025-01&rft.volume=69&rft.issue=1&rft.spage=176&rft.epage=193&rft.pages=176-193&rft.issn=0092-5853&rft.eissn=1540-5907&rft_id=info:doi/10.1111/ajps.12825&rft_dat=%3Cproquest_cross%3E3154713625%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154713625&rft_id=info:pmid/&rfr_iscdi=true