Signatures of de‐domestication in autochthonous pig breeds and of domestication in wild boar populations from MC 1R and NR 6A1 allele distribution

Autochthonous pig breeds are usually reared in extensive or semi‐extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor ( MC 1R ) gene (which cause different coat colour ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Animal genetics 2019-04, Vol.50 (2), p.166-171
Hauptverfasser: Ribani, A., Utzeri, V. J., Geraci, C., Tinarelli, S., Djan, M., Veličković, N., Doneva, R., Dall'Olio, S., Nanni Costa, L., Schiavo, G., Bovo, S., Usai, G., Gallo, M., Radović, Č., Savić, R., Karolyi, D., Salajpal, K., Gvozdanović, K., Djurkin‐Kušec, I., Škrlep, M., Čandek‐Potokar, M., Ovilo, C., Fontanesi, L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue 2
container_start_page 166
container_title Animal genetics
container_volume 50
creator Ribani, A.
Utzeri, V. J.
Geraci, C.
Tinarelli, S.
Djan, M.
Veličković, N.
Doneva, R.
Dall'Olio, S.
Nanni Costa, L.
Schiavo, G.
Bovo, S.
Usai, G.
Gallo, M.
Radović, Č.
Savić, R.
Karolyi, D.
Salajpal, K.
Gvozdanović, K.
Djurkin‐Kušec, I.
Škrlep, M.
Čandek‐Potokar, M.
Ovilo, C.
Fontanesi, L.
description Autochthonous pig breeds are usually reared in extensive or semi‐extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor ( MC 1R ) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 ( NR 6A1 ) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo‐Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south‐eastern European countries (Krškopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro‐geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild‐type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC 1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of ‘de‐domestication’ process, and wild resources are challenged by a ‘domestication’ drift. Both need to be further investigated and managed.
doi_str_mv 10.1111/age.12771
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_age_12771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_age_12771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c741-b5d715c758bffa40fa2e5d41bbdffe7b86559ed6091438dfc81a5edf5211f1983</originalsourceid><addsrcrecordid>eNpdkE1OwzAQRi0EEqWw4AazZZHiSeLYXVYVf1IBqXQf2bHdGqVxZCdC7DgCC07ISUgDK2Yz0mjeJ32PkEukMxzmWm7NDFPO8YhMMCtYklKWHpMJTQuRzDEvTslZjK-UUoEcJ-TrxW0b2fXBRPAWtPn--NR-b2LnKtk534BrQPadr3bdzje-j9C6LahgjI4gGz1S_4E3V2tQXgZofdvX4z2CDX4Pj0vA9Qg-raFYIMi6NrUB7WIXnOoPr-fkxMo6mou_PSWb25vN8j5ZPd89LBerpOI5JoppjqziTChrZU6tTA3TOSqlrTVciYKxudEFHWpnQttKoGRGW5YiWpyLbEqufmOr4GMMxpZtcHsZ3kuk5cFmOdgsR5vZD8O4a78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Signatures of de‐domestication in autochthonous pig breeds and of domestication in wild boar populations from MC 1R and NR 6A1 allele distribution</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ribani, A. ; Utzeri, V. J. ; Geraci, C. ; Tinarelli, S. ; Djan, M. ; Veličković, N. ; Doneva, R. ; Dall'Olio, S. ; Nanni Costa, L. ; Schiavo, G. ; Bovo, S. ; Usai, G. ; Gallo, M. ; Radović, Č. ; Savić, R. ; Karolyi, D. ; Salajpal, K. ; Gvozdanović, K. ; Djurkin‐Kušec, I. ; Škrlep, M. ; Čandek‐Potokar, M. ; Ovilo, C. ; Fontanesi, L.</creator><creatorcontrib>Ribani, A. ; Utzeri, V. J. ; Geraci, C. ; Tinarelli, S. ; Djan, M. ; Veličković, N. ; Doneva, R. ; Dall'Olio, S. ; Nanni Costa, L. ; Schiavo, G. ; Bovo, S. ; Usai, G. ; Gallo, M. ; Radović, Č. ; Savić, R. ; Karolyi, D. ; Salajpal, K. ; Gvozdanović, K. ; Djurkin‐Kušec, I. ; Škrlep, M. ; Čandek‐Potokar, M. ; Ovilo, C. ; Fontanesi, L.</creatorcontrib><description>Autochthonous pig breeds are usually reared in extensive or semi‐extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor ( MC 1R ) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 ( NR 6A1 ) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo‐Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south‐eastern European countries (Krškopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro‐geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild‐type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC 1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of ‘de‐domestication’ process, and wild resources are challenged by a ‘domestication’ drift. Both need to be further investigated and managed.</description><identifier>ISSN: 0268-9146</identifier><identifier>EISSN: 1365-2052</identifier><identifier>DOI: 10.1111/age.12771</identifier><language>eng</language><ispartof>Animal genetics, 2019-04, Vol.50 (2), p.166-171</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c741-b5d715c758bffa40fa2e5d41bbdffe7b86559ed6091438dfc81a5edf5211f1983</citedby><cites>FETCH-LOGICAL-c741-b5d715c758bffa40fa2e5d41bbdffe7b86559ed6091438dfc81a5edf5211f1983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ribani, A.</creatorcontrib><creatorcontrib>Utzeri, V. J.</creatorcontrib><creatorcontrib>Geraci, C.</creatorcontrib><creatorcontrib>Tinarelli, S.</creatorcontrib><creatorcontrib>Djan, M.</creatorcontrib><creatorcontrib>Veličković, N.</creatorcontrib><creatorcontrib>Doneva, R.</creatorcontrib><creatorcontrib>Dall'Olio, S.</creatorcontrib><creatorcontrib>Nanni Costa, L.</creatorcontrib><creatorcontrib>Schiavo, G.</creatorcontrib><creatorcontrib>Bovo, S.</creatorcontrib><creatorcontrib>Usai, G.</creatorcontrib><creatorcontrib>Gallo, M.</creatorcontrib><creatorcontrib>Radović, Č.</creatorcontrib><creatorcontrib>Savić, R.</creatorcontrib><creatorcontrib>Karolyi, D.</creatorcontrib><creatorcontrib>Salajpal, K.</creatorcontrib><creatorcontrib>Gvozdanović, K.</creatorcontrib><creatorcontrib>Djurkin‐Kušec, I.</creatorcontrib><creatorcontrib>Škrlep, M.</creatorcontrib><creatorcontrib>Čandek‐Potokar, M.</creatorcontrib><creatorcontrib>Ovilo, C.</creatorcontrib><creatorcontrib>Fontanesi, L.</creatorcontrib><title>Signatures of de‐domestication in autochthonous pig breeds and of domestication in wild boar populations from MC 1R and NR 6A1 allele distribution</title><title>Animal genetics</title><description>Autochthonous pig breeds are usually reared in extensive or semi‐extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor ( MC 1R ) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 ( NR 6A1 ) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo‐Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south‐eastern European countries (Krškopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro‐geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild‐type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC 1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of ‘de‐domestication’ process, and wild resources are challenged by a ‘domestication’ drift. Both need to be further investigated and managed.</description><issn>0268-9146</issn><issn>1365-2052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkE1OwzAQRi0EEqWw4AazZZHiSeLYXVYVf1IBqXQf2bHdGqVxZCdC7DgCC07ISUgDK2Yz0mjeJ32PkEukMxzmWm7NDFPO8YhMMCtYklKWHpMJTQuRzDEvTslZjK-UUoEcJ-TrxW0b2fXBRPAWtPn--NR-b2LnKtk534BrQPadr3bdzje-j9C6LahgjI4gGz1S_4E3V2tQXgZofdvX4z2CDX4Pj0vA9Qg-raFYIMi6NrUB7WIXnOoPr-fkxMo6mou_PSWb25vN8j5ZPd89LBerpOI5JoppjqziTChrZU6tTA3TOSqlrTVciYKxudEFHWpnQttKoGRGW5YiWpyLbEqufmOr4GMMxpZtcHsZ3kuk5cFmOdgsR5vZD8O4a78</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Ribani, A.</creator><creator>Utzeri, V. J.</creator><creator>Geraci, C.</creator><creator>Tinarelli, S.</creator><creator>Djan, M.</creator><creator>Veličković, N.</creator><creator>Doneva, R.</creator><creator>Dall'Olio, S.</creator><creator>Nanni Costa, L.</creator><creator>Schiavo, G.</creator><creator>Bovo, S.</creator><creator>Usai, G.</creator><creator>Gallo, M.</creator><creator>Radović, Č.</creator><creator>Savić, R.</creator><creator>Karolyi, D.</creator><creator>Salajpal, K.</creator><creator>Gvozdanović, K.</creator><creator>Djurkin‐Kušec, I.</creator><creator>Škrlep, M.</creator><creator>Čandek‐Potokar, M.</creator><creator>Ovilo, C.</creator><creator>Fontanesi, L.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201904</creationdate><title>Signatures of de‐domestication in autochthonous pig breeds and of domestication in wild boar populations from MC 1R and NR 6A1 allele distribution</title><author>Ribani, A. ; Utzeri, V. J. ; Geraci, C. ; Tinarelli, S. ; Djan, M. ; Veličković, N. ; Doneva, R. ; Dall'Olio, S. ; Nanni Costa, L. ; Schiavo, G. ; Bovo, S. ; Usai, G. ; Gallo, M. ; Radović, Č. ; Savić, R. ; Karolyi, D. ; Salajpal, K. ; Gvozdanović, K. ; Djurkin‐Kušec, I. ; Škrlep, M. ; Čandek‐Potokar, M. ; Ovilo, C. ; Fontanesi, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c741-b5d715c758bffa40fa2e5d41bbdffe7b86559ed6091438dfc81a5edf5211f1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribani, A.</creatorcontrib><creatorcontrib>Utzeri, V. J.</creatorcontrib><creatorcontrib>Geraci, C.</creatorcontrib><creatorcontrib>Tinarelli, S.</creatorcontrib><creatorcontrib>Djan, M.</creatorcontrib><creatorcontrib>Veličković, N.</creatorcontrib><creatorcontrib>Doneva, R.</creatorcontrib><creatorcontrib>Dall'Olio, S.</creatorcontrib><creatorcontrib>Nanni Costa, L.</creatorcontrib><creatorcontrib>Schiavo, G.</creatorcontrib><creatorcontrib>Bovo, S.</creatorcontrib><creatorcontrib>Usai, G.</creatorcontrib><creatorcontrib>Gallo, M.</creatorcontrib><creatorcontrib>Radović, Č.</creatorcontrib><creatorcontrib>Savić, R.</creatorcontrib><creatorcontrib>Karolyi, D.</creatorcontrib><creatorcontrib>Salajpal, K.</creatorcontrib><creatorcontrib>Gvozdanović, K.</creatorcontrib><creatorcontrib>Djurkin‐Kušec, I.</creatorcontrib><creatorcontrib>Škrlep, M.</creatorcontrib><creatorcontrib>Čandek‐Potokar, M.</creatorcontrib><creatorcontrib>Ovilo, C.</creatorcontrib><creatorcontrib>Fontanesi, L.</creatorcontrib><collection>CrossRef</collection><jtitle>Animal genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribani, A.</au><au>Utzeri, V. J.</au><au>Geraci, C.</au><au>Tinarelli, S.</au><au>Djan, M.</au><au>Veličković, N.</au><au>Doneva, R.</au><au>Dall'Olio, S.</au><au>Nanni Costa, L.</au><au>Schiavo, G.</au><au>Bovo, S.</au><au>Usai, G.</au><au>Gallo, M.</au><au>Radović, Č.</au><au>Savić, R.</au><au>Karolyi, D.</au><au>Salajpal, K.</au><au>Gvozdanović, K.</au><au>Djurkin‐Kušec, I.</au><au>Škrlep, M.</au><au>Čandek‐Potokar, M.</au><au>Ovilo, C.</au><au>Fontanesi, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Signatures of de‐domestication in autochthonous pig breeds and of domestication in wild boar populations from MC 1R and NR 6A1 allele distribution</atitle><jtitle>Animal genetics</jtitle><date>2019-04</date><risdate>2019</risdate><volume>50</volume><issue>2</issue><spage>166</spage><epage>171</epage><pages>166-171</pages><issn>0268-9146</issn><eissn>1365-2052</eissn><abstract>Autochthonous pig breeds are usually reared in extensive or semi‐extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor ( MC 1R ) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 ( NR 6A1 ) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo‐Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south‐eastern European countries (Krškopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro‐geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild‐type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC 1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of ‘de‐domestication’ process, and wild resources are challenged by a ‘domestication’ drift. Both need to be further investigated and managed.</abstract><doi>10.1111/age.12771</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0268-9146
ispartof Animal genetics, 2019-04, Vol.50 (2), p.166-171
issn 0268-9146
1365-2052
language eng
recordid cdi_crossref_primary_10_1111_age_12771
source Wiley Online Library Journals Frontfile Complete
title Signatures of de‐domestication in autochthonous pig breeds and of domestication in wild boar populations from MC 1R and NR 6A1 allele distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T23%3A07%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Signatures%20of%20de%E2%80%90domestication%20in%20autochthonous%20pig%20breeds%20and%20of%20domestication%20in%20wild%20boar%20populations%20from%20MC%201R%20and%20NR%206A1%20allele%20distribution&rft.jtitle=Animal%20genetics&rft.au=Ribani,%20A.&rft.date=2019-04&rft.volume=50&rft.issue=2&rft.spage=166&rft.epage=171&rft.pages=166-171&rft.issn=0268-9146&rft.eissn=1365-2052&rft_id=info:doi/10.1111/age.12771&rft_dat=%3Ccrossref%3E10_1111_age_12771%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true