Integrating multi‐trait genomic selection with simulation strategies to improve grain yield and parental line selection in rice

Inclusion of correlated secondary traits in the prediction of primary trait in multi‐trait genomic selection (GS) models can improve the predictive ability. Our objectives in the present investigations were to (i) evaluate the effectiveness of multi‐trait and single‐trait GS models for the higher pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of applied biology 2024-12
Hauptverfasser: Anilkumar, Chandrappa, Sah, Rameswar Prasad, Muhammed Azharudheen, T. P., Behera, Sasmita, Mohanty, Soumya Priyadarshini, Anandan, Annamalai, Marndi, Bishnu Charan, Samantaray, Sanghamitra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Annals of applied biology
container_volume
creator Anilkumar, Chandrappa
Sah, Rameswar Prasad
Muhammed Azharudheen, T. P.
Behera, Sasmita
Mohanty, Soumya Priyadarshini
Anandan, Annamalai
Marndi, Bishnu Charan
Samantaray, Sanghamitra
description Inclusion of correlated secondary traits in the prediction of primary trait in multi‐trait genomic selection (GS) models can improve the predictive ability. Our objectives in the present investigations were to (i) evaluate the effectiveness of multi‐trait and single‐trait GS models for the higher predictive ability and (ii) compare the breeding potential of parental lines selected based on phenotype and GS for grain yield in rice. We used phenotype data of five correlated traits as secondary traits evaluated to predict the grain yield, a primary trait. Yield related functional markers were used for prediction. Breeding populations were simulated using the best parents selected through GS and phenotype based selection. Results suggest that the multi‐trait model resulted in higher predictive abilities (0.82 for grain yield) than single‐trait models (0.76 for grain yield) and parents selected through GS have potential to produce superior progenies. We conclude that the use of a multi‐trait GS approach is advantageous over single‐trait models, and the GS also help selecting potential parents for developing improved populations. The results of the study have potential scope for improving quantitative traits using GS in rice.
doi_str_mv 10.1111/aab.12964
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1111_aab_12964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1111_aab_12964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-47872c83223677aec35a5cdb7d423c4b58ecb83ee2144f666e8d3bd8b761efa93</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EEqWw4A-8ZZESP2o7S1TxqFSJDawjx5mEQYlT2QbUHfwB38iXYAoLZjO60pmr0SHknJULlufS2mbBeKXkAZkxLWWhhTSHZFaWpSikluqYnMT4nGNVVnxGPtY-QR9sQt_T8WVI-PX-mYLFRHvw04iORhjAJZw8fcP0RCNmzO5zzGC-Rog0TRTHbZhegeY29HSHMLTU-pZubQCf7EAH9PCvLUMBHZySo84OEc7-9pw83lw_rO6Kzf3tenW1KRxjVcq_G82dEZwLpbUFJ5Z26dpGt5ILJ5ulAdcYAcCZlJ1SCkwrmtY0WjHobCXm5OK314UpxgBdvQ042rCrWVn_uKuzu3rvTnwDosRmkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integrating multi‐trait genomic selection with simulation strategies to improve grain yield and parental line selection in rice</title><source>Wiley Online Library All Journals</source><creator>Anilkumar, Chandrappa ; Sah, Rameswar Prasad ; Muhammed Azharudheen, T. P. ; Behera, Sasmita ; Mohanty, Soumya Priyadarshini ; Anandan, Annamalai ; Marndi, Bishnu Charan ; Samantaray, Sanghamitra</creator><creatorcontrib>Anilkumar, Chandrappa ; Sah, Rameswar Prasad ; Muhammed Azharudheen, T. P. ; Behera, Sasmita ; Mohanty, Soumya Priyadarshini ; Anandan, Annamalai ; Marndi, Bishnu Charan ; Samantaray, Sanghamitra</creatorcontrib><description>Inclusion of correlated secondary traits in the prediction of primary trait in multi‐trait genomic selection (GS) models can improve the predictive ability. Our objectives in the present investigations were to (i) evaluate the effectiveness of multi‐trait and single‐trait GS models for the higher predictive ability and (ii) compare the breeding potential of parental lines selected based on phenotype and GS for grain yield in rice. We used phenotype data of five correlated traits as secondary traits evaluated to predict the grain yield, a primary trait. Yield related functional markers were used for prediction. Breeding populations were simulated using the best parents selected through GS and phenotype based selection. Results suggest that the multi‐trait model resulted in higher predictive abilities (0.82 for grain yield) than single‐trait models (0.76 for grain yield) and parents selected through GS have potential to produce superior progenies. We conclude that the use of a multi‐trait GS approach is advantageous over single‐trait models, and the GS also help selecting potential parents for developing improved populations. The results of the study have potential scope for improving quantitative traits using GS in rice.</description><identifier>ISSN: 0003-4746</identifier><identifier>EISSN: 1744-7348</identifier><identifier>DOI: 10.1111/aab.12964</identifier><language>eng</language><ispartof>Annals of applied biology, 2024-12</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c119t-47872c83223677aec35a5cdb7d423c4b58ecb83ee2144f666e8d3bd8b761efa93</cites><orcidid>0000-0003-1724-3685 ; 0000-0002-7359-1249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids></links><search><creatorcontrib>Anilkumar, Chandrappa</creatorcontrib><creatorcontrib>Sah, Rameswar Prasad</creatorcontrib><creatorcontrib>Muhammed Azharudheen, T. P.</creatorcontrib><creatorcontrib>Behera, Sasmita</creatorcontrib><creatorcontrib>Mohanty, Soumya Priyadarshini</creatorcontrib><creatorcontrib>Anandan, Annamalai</creatorcontrib><creatorcontrib>Marndi, Bishnu Charan</creatorcontrib><creatorcontrib>Samantaray, Sanghamitra</creatorcontrib><title>Integrating multi‐trait genomic selection with simulation strategies to improve grain yield and parental line selection in rice</title><title>Annals of applied biology</title><description>Inclusion of correlated secondary traits in the prediction of primary trait in multi‐trait genomic selection (GS) models can improve the predictive ability. Our objectives in the present investigations were to (i) evaluate the effectiveness of multi‐trait and single‐trait GS models for the higher predictive ability and (ii) compare the breeding potential of parental lines selected based on phenotype and GS for grain yield in rice. We used phenotype data of five correlated traits as secondary traits evaluated to predict the grain yield, a primary trait. Yield related functional markers were used for prediction. Breeding populations were simulated using the best parents selected through GS and phenotype based selection. Results suggest that the multi‐trait model resulted in higher predictive abilities (0.82 for grain yield) than single‐trait models (0.76 for grain yield) and parents selected through GS have potential to produce superior progenies. We conclude that the use of a multi‐trait GS approach is advantageous over single‐trait models, and the GS also help selecting potential parents for developing improved populations. The results of the study have potential scope for improving quantitative traits using GS in rice.</description><issn>0003-4746</issn><issn>1744-7348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EEqWw4A-8ZZESP2o7S1TxqFSJDawjx5mEQYlT2QbUHfwB38iXYAoLZjO60pmr0SHknJULlufS2mbBeKXkAZkxLWWhhTSHZFaWpSikluqYnMT4nGNVVnxGPtY-QR9sQt_T8WVI-PX-mYLFRHvw04iORhjAJZw8fcP0RCNmzO5zzGC-Rog0TRTHbZhegeY29HSHMLTU-pZubQCf7EAH9PCvLUMBHZySo84OEc7-9pw83lw_rO6Kzf3tenW1KRxjVcq_G82dEZwLpbUFJ5Z26dpGt5ILJ5ulAdcYAcCZlJ1SCkwrmtY0WjHobCXm5OK314UpxgBdvQ042rCrWVn_uKuzu3rvTnwDosRmkQ</recordid><startdate>20241204</startdate><enddate>20241204</enddate><creator>Anilkumar, Chandrappa</creator><creator>Sah, Rameswar Prasad</creator><creator>Muhammed Azharudheen, T. P.</creator><creator>Behera, Sasmita</creator><creator>Mohanty, Soumya Priyadarshini</creator><creator>Anandan, Annamalai</creator><creator>Marndi, Bishnu Charan</creator><creator>Samantaray, Sanghamitra</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1724-3685</orcidid><orcidid>https://orcid.org/0000-0002-7359-1249</orcidid></search><sort><creationdate>20241204</creationdate><title>Integrating multi‐trait genomic selection with simulation strategies to improve grain yield and parental line selection in rice</title><author>Anilkumar, Chandrappa ; Sah, Rameswar Prasad ; Muhammed Azharudheen, T. P. ; Behera, Sasmita ; Mohanty, Soumya Priyadarshini ; Anandan, Annamalai ; Marndi, Bishnu Charan ; Samantaray, Sanghamitra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-47872c83223677aec35a5cdb7d423c4b58ecb83ee2144f666e8d3bd8b761efa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anilkumar, Chandrappa</creatorcontrib><creatorcontrib>Sah, Rameswar Prasad</creatorcontrib><creatorcontrib>Muhammed Azharudheen, T. P.</creatorcontrib><creatorcontrib>Behera, Sasmita</creatorcontrib><creatorcontrib>Mohanty, Soumya Priyadarshini</creatorcontrib><creatorcontrib>Anandan, Annamalai</creatorcontrib><creatorcontrib>Marndi, Bishnu Charan</creatorcontrib><creatorcontrib>Samantaray, Sanghamitra</creatorcontrib><collection>CrossRef</collection><jtitle>Annals of applied biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anilkumar, Chandrappa</au><au>Sah, Rameswar Prasad</au><au>Muhammed Azharudheen, T. P.</au><au>Behera, Sasmita</au><au>Mohanty, Soumya Priyadarshini</au><au>Anandan, Annamalai</au><au>Marndi, Bishnu Charan</au><au>Samantaray, Sanghamitra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating multi‐trait genomic selection with simulation strategies to improve grain yield and parental line selection in rice</atitle><jtitle>Annals of applied biology</jtitle><date>2024-12-04</date><risdate>2024</risdate><issn>0003-4746</issn><eissn>1744-7348</eissn><abstract>Inclusion of correlated secondary traits in the prediction of primary trait in multi‐trait genomic selection (GS) models can improve the predictive ability. Our objectives in the present investigations were to (i) evaluate the effectiveness of multi‐trait and single‐trait GS models for the higher predictive ability and (ii) compare the breeding potential of parental lines selected based on phenotype and GS for grain yield in rice. We used phenotype data of five correlated traits as secondary traits evaluated to predict the grain yield, a primary trait. Yield related functional markers were used for prediction. Breeding populations were simulated using the best parents selected through GS and phenotype based selection. Results suggest that the multi‐trait model resulted in higher predictive abilities (0.82 for grain yield) than single‐trait models (0.76 for grain yield) and parents selected through GS have potential to produce superior progenies. We conclude that the use of a multi‐trait GS approach is advantageous over single‐trait models, and the GS also help selecting potential parents for developing improved populations. The results of the study have potential scope for improving quantitative traits using GS in rice.</abstract><doi>10.1111/aab.12964</doi><orcidid>https://orcid.org/0000-0003-1724-3685</orcidid><orcidid>https://orcid.org/0000-0002-7359-1249</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-4746
ispartof Annals of applied biology, 2024-12
issn 0003-4746
1744-7348
language eng
recordid cdi_crossref_primary_10_1111_aab_12964
source Wiley Online Library All Journals
title Integrating multi‐trait genomic selection with simulation strategies to improve grain yield and parental line selection in rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T01%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20multi%E2%80%90trait%20genomic%20selection%20with%20simulation%20strategies%20to%20improve%20grain%20yield%20and%20parental%20line%20selection%20in%20rice&rft.jtitle=Annals%20of%20applied%20biology&rft.au=Anilkumar,%20Chandrappa&rft.date=2024-12-04&rft.issn=0003-4746&rft.eissn=1744-7348&rft_id=info:doi/10.1111/aab.12964&rft_dat=%3Ccrossref%3E10_1111_aab_12964%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true