Correction of Density Estimators that are not Densities
Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods...
Gespeichert in:
Veröffentlicht in: | Scandinavian journal of statistics 2003-06, Vol.30 (2), p.415-427 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 2 |
container_start_page | 415 |
container_title | Scandinavian journal of statistics |
container_volume | 30 |
creator | Glad, Ingrid K. Hjort, Nils Lid Ushakov, Nikolai G. |
description | Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern$h^{4}$bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k-NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators. |
doi_str_mv | 10.1111/1467-9469.00339 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_1467_9469_00339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4616772</jstor_id><sourcerecordid>4616772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4109-ed27b3a4e0bac454be2408bb52761da2942ddbdd28d7f0df0122ddc9d6314fee3</originalsourceid><addsrcrecordid>eNqFT8tOwzAQtBBIlMKZC4f8QKhfsZMjKqWlVPQQEMeVEztqSttUtgXk73FIlSuWxmvteGZ3ELol-J6EMyFcyDjjIrvHmLHsDI2GzjkaYYZZLNIsvURXzm0xJoKTdITktLHWlL5uDlFTRY_m4GrfRjPn673yjXWR3ygfKWuiQ-NPfG3cNbqo1M6Zm1Mdo_en2dt0Ea_W8-fpwyouOcFZbDSVBVPc4EKVPOGFoRynRZFQKYhWNONU60JrmmpZYV1hQkOjzLRghFfGsDGa9L6lbZyzpoKjDZvZFgiGLjd0KaFLCX-5g2LZK6w5mnL4XuyUK7fOK_gCphgOVxtAgyiUunsGHAM4SYBTCRu_D2a8N_uud6b9bzbky3Xe73DXy8LAxg4yLoiQkgY67unaefMz0Mp-gpBMJvDxOoeXfJEnZCmBsV9vCIvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correction of Density Estimators that are not Densities</title><source>Jstor Complete Legacy</source><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics & Statistics</source><source>EBSCOhost Business Source Complete</source><creator>Glad, Ingrid K. ; Hjort, Nils Lid ; Ushakov, Nikolai G.</creator><creatorcontrib>Glad, Ingrid K. ; Hjort, Nils Lid ; Ushakov, Nikolai G.</creatorcontrib><description>Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern$h^{4}$bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k-NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators.</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/1467-9469.00339</identifier><language>eng</language><publisher>Cowley Road, Oxford, UK: Blackwell Publishers</publisher><subject>Average linear density ; bona fide densities ; Density ; Density distributions ; Density estimation ; Estimation bias ; Estimation methods ; Estimators ; mean integrated squared error ; Preliminary estimates ; Sample size ; Statistical theories</subject><ispartof>Scandinavian journal of statistics, 2003-06, Vol.30 (2), p.415-427</ispartof><rights>Copyright 2003 Board of the Foundation of the Scandinavian Journal of Statistics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4109-ed27b3a4e0bac454be2408bb52761da2942ddbdd28d7f0df0122ddc9d6314fee3</citedby><cites>FETCH-LOGICAL-c4109-ed27b3a4e0bac454be2408bb52761da2942ddbdd28d7f0df0122ddc9d6314fee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4616772$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4616772$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3994,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blascjsta/v_3a30_3ay_3a2003_3ai_3a2_3ap_3a415-427.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Glad, Ingrid K.</creatorcontrib><creatorcontrib>Hjort, Nils Lid</creatorcontrib><creatorcontrib>Ushakov, Nikolai G.</creatorcontrib><title>Correction of Density Estimators that are not Densities</title><title>Scandinavian journal of statistics</title><description>Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern$h^{4}$bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k-NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators.</description><subject>Average linear density</subject><subject>bona fide densities</subject><subject>Density</subject><subject>Density distributions</subject><subject>Density estimation</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>mean integrated squared error</subject><subject>Preliminary estimates</subject><subject>Sample size</subject><subject>Statistical theories</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFT8tOwzAQtBBIlMKZC4f8QKhfsZMjKqWlVPQQEMeVEztqSttUtgXk73FIlSuWxmvteGZ3ELol-J6EMyFcyDjjIrvHmLHsDI2GzjkaYYZZLNIsvURXzm0xJoKTdITktLHWlL5uDlFTRY_m4GrfRjPn673yjXWR3ygfKWuiQ-NPfG3cNbqo1M6Zm1Mdo_en2dt0Ea_W8-fpwyouOcFZbDSVBVPc4EKVPOGFoRynRZFQKYhWNONU60JrmmpZYV1hQkOjzLRghFfGsDGa9L6lbZyzpoKjDZvZFgiGLjd0KaFLCX-5g2LZK6w5mnL4XuyUK7fOK_gCphgOVxtAgyiUunsGHAM4SYBTCRu_D2a8N_uud6b9bzbky3Xe73DXy8LAxg4yLoiQkgY67unaefMz0Mp-gpBMJvDxOoeXfJEnZCmBsV9vCIvs</recordid><startdate>200306</startdate><enddate>200306</enddate><creator>Glad, Ingrid K.</creator><creator>Hjort, Nils Lid</creator><creator>Ushakov, Nikolai G.</creator><general>Blackwell Publishers</general><general>Danish Society for Theoretical Statistics</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200306</creationdate><title>Correction of Density Estimators that are not Densities</title><author>Glad, Ingrid K. ; Hjort, Nils Lid ; Ushakov, Nikolai G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4109-ed27b3a4e0bac454be2408bb52761da2942ddbdd28d7f0df0122ddc9d6314fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Average linear density</topic><topic>bona fide densities</topic><topic>Density</topic><topic>Density distributions</topic><topic>Density estimation</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>mean integrated squared error</topic><topic>Preliminary estimates</topic><topic>Sample size</topic><topic>Statistical theories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glad, Ingrid K.</creatorcontrib><creatorcontrib>Hjort, Nils Lid</creatorcontrib><creatorcontrib>Ushakov, Nikolai G.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glad, Ingrid K.</au><au>Hjort, Nils Lid</au><au>Ushakov, Nikolai G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction of Density Estimators that are not Densities</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>2003-06</date><risdate>2003</risdate><volume>30</volume><issue>2</issue><spage>415</spage><epage>427</epage><pages>415-427</pages><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern$h^{4}$bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k-NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators.</abstract><cop>Cowley Road, Oxford, UK</cop><pub>Blackwell Publishers</pub><doi>10.1111/1467-9469.00339</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6898 |
ispartof | Scandinavian journal of statistics, 2003-06, Vol.30 (2), p.415-427 |
issn | 0303-6898 1467-9469 |
language | eng |
recordid | cdi_crossref_primary_10_1111_1467_9469_00339 |
source | Jstor Complete Legacy; RePEc; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete |
subjects | Average linear density bona fide densities Density Density distributions Density estimation Estimation bias Estimation methods Estimators mean integrated squared error Preliminary estimates Sample size Statistical theories |
title | Correction of Density Estimators that are not Densities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction%20of%20Density%20Estimators%20that%20are%20not%20Densities&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=Glad,%20Ingrid%20K.&rft.date=2003-06&rft.volume=30&rft.issue=2&rft.spage=415&rft.epage=427&rft.pages=415-427&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/1467-9469.00339&rft_dat=%3Cjstor_cross%3E4616772%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4616772&rfr_iscdi=true |