Correction of Density Estimators that are not Densities

Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2003-06, Vol.30 (2), p.415-427
Hauptverfasser: Glad, Ingrid K., Hjort, Nils Lid, Ushakov, Nikolai G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 2
container_start_page 415
container_title Scandinavian journal of statistics
container_volume 30
creator Glad, Ingrid K.
Hjort, Nils Lid
Ushakov, Nikolai G.
description Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern$h^{4}$bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k-NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators.
doi_str_mv 10.1111/1467-9469.00339
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_1467_9469_00339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4616772</jstor_id><sourcerecordid>4616772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4109-ed27b3a4e0bac454be2408bb52761da2942ddbdd28d7f0df0122ddc9d6314fee3</originalsourceid><addsrcrecordid>eNqFT8tOwzAQtBBIlMKZC4f8QKhfsZMjKqWlVPQQEMeVEztqSttUtgXk73FIlSuWxmvteGZ3ELol-J6EMyFcyDjjIrvHmLHsDI2GzjkaYYZZLNIsvURXzm0xJoKTdITktLHWlL5uDlFTRY_m4GrfRjPn673yjXWR3ygfKWuiQ-NPfG3cNbqo1M6Zm1Mdo_en2dt0Ea_W8-fpwyouOcFZbDSVBVPc4EKVPOGFoRynRZFQKYhWNONU60JrmmpZYV1hQkOjzLRghFfGsDGa9L6lbZyzpoKjDZvZFgiGLjd0KaFLCX-5g2LZK6w5mnL4XuyUK7fOK_gCphgOVxtAgyiUunsGHAM4SYBTCRu_D2a8N_uud6b9bzbky3Xe73DXy8LAxg4yLoiQkgY67unaefMz0Mp-gpBMJvDxOoeXfJEnZCmBsV9vCIvs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Correction of Density Estimators that are not Densities</title><source>Jstor Complete Legacy</source><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><source>EBSCOhost Business Source Complete</source><creator>Glad, Ingrid K. ; Hjort, Nils Lid ; Ushakov, Nikolai G.</creator><creatorcontrib>Glad, Ingrid K. ; Hjort, Nils Lid ; Ushakov, Nikolai G.</creatorcontrib><description>Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern$h^{4}$bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k-NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators.</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/1467-9469.00339</identifier><language>eng</language><publisher>Cowley Road, Oxford, UK: Blackwell Publishers</publisher><subject>Average linear density ; bona fide densities ; Density ; Density distributions ; Density estimation ; Estimation bias ; Estimation methods ; Estimators ; mean integrated squared error ; Preliminary estimates ; Sample size ; Statistical theories</subject><ispartof>Scandinavian journal of statistics, 2003-06, Vol.30 (2), p.415-427</ispartof><rights>Copyright 2003 Board of the Foundation of the Scandinavian Journal of Statistics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4109-ed27b3a4e0bac454be2408bb52761da2942ddbdd28d7f0df0122ddc9d6314fee3</citedby><cites>FETCH-LOGICAL-c4109-ed27b3a4e0bac454be2408bb52761da2942ddbdd28d7f0df0122ddc9d6314fee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4616772$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4616772$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3994,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blascjsta/v_3a30_3ay_3a2003_3ai_3a2_3ap_3a415-427.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Glad, Ingrid K.</creatorcontrib><creatorcontrib>Hjort, Nils Lid</creatorcontrib><creatorcontrib>Ushakov, Nikolai G.</creatorcontrib><title>Correction of Density Estimators that are not Densities</title><title>Scandinavian journal of statistics</title><description>Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern$h^{4}$bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k-NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators.</description><subject>Average linear density</subject><subject>bona fide densities</subject><subject>Density</subject><subject>Density distributions</subject><subject>Density estimation</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Estimators</subject><subject>mean integrated squared error</subject><subject>Preliminary estimates</subject><subject>Sample size</subject><subject>Statistical theories</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFT8tOwzAQtBBIlMKZC4f8QKhfsZMjKqWlVPQQEMeVEztqSttUtgXk73FIlSuWxmvteGZ3ELol-J6EMyFcyDjjIrvHmLHsDI2GzjkaYYZZLNIsvURXzm0xJoKTdITktLHWlL5uDlFTRY_m4GrfRjPn673yjXWR3ygfKWuiQ-NPfG3cNbqo1M6Zm1Mdo_en2dt0Ea_W8-fpwyouOcFZbDSVBVPc4EKVPOGFoRynRZFQKYhWNONU60JrmmpZYV1hQkOjzLRghFfGsDGa9L6lbZyzpoKjDZvZFgiGLjd0KaFLCX-5g2LZK6w5mnL4XuyUK7fOK_gCphgOVxtAgyiUunsGHAM4SYBTCRu_D2a8N_uud6b9bzbky3Xe73DXy8LAxg4yLoiQkgY67unaefMz0Mp-gpBMJvDxOoeXfJEnZCmBsV9vCIvs</recordid><startdate>200306</startdate><enddate>200306</enddate><creator>Glad, Ingrid K.</creator><creator>Hjort, Nils Lid</creator><creator>Ushakov, Nikolai G.</creator><general>Blackwell Publishers</general><general>Danish Society for Theoretical Statistics</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200306</creationdate><title>Correction of Density Estimators that are not Densities</title><author>Glad, Ingrid K. ; Hjort, Nils Lid ; Ushakov, Nikolai G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4109-ed27b3a4e0bac454be2408bb52761da2942ddbdd28d7f0df0122ddc9d6314fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Average linear density</topic><topic>bona fide densities</topic><topic>Density</topic><topic>Density distributions</topic><topic>Density estimation</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Estimators</topic><topic>mean integrated squared error</topic><topic>Preliminary estimates</topic><topic>Sample size</topic><topic>Statistical theories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glad, Ingrid K.</creatorcontrib><creatorcontrib>Hjort, Nils Lid</creatorcontrib><creatorcontrib>Ushakov, Nikolai G.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Glad, Ingrid K.</au><au>Hjort, Nils Lid</au><au>Ushakov, Nikolai G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correction of Density Estimators that are not Densities</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>2003-06</date><risdate>2003</risdate><volume>30</volume><issue>2</issue><spage>415</spage><epage>427</epage><pages>415-427</pages><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>Several old and new density estimators may have good theoretical performance, but are hampered by not being bona fide densities; they may be negative in certain regions or may not integrate to 1. One can therefore not simulate from them, for example. This paper develops general modification methods that turn any density estimator into one which is a bona fide density, and which is always better in performance under one set of conditions and arbitrarily close in performance under a complementary set of conditions. This improvement-for-free procedure can, in particular, be applied for higher-order kernel estimators, classes of modern$h^{4}$bias kernel type estimators, superkernel estimators, the sinc kernel estimator, the k-NN estimator, orthogonal expansion estimators, and for various recently developed semi-parametric density estimators.</abstract><cop>Cowley Road, Oxford, UK</cop><pub>Blackwell Publishers</pub><doi>10.1111/1467-9469.00339</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-6898
ispartof Scandinavian journal of statistics, 2003-06, Vol.30 (2), p.415-427
issn 0303-6898
1467-9469
language eng
recordid cdi_crossref_primary_10_1111_1467_9469_00339
source Jstor Complete Legacy; RePEc; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics; EBSCOhost Business Source Complete
subjects Average linear density
bona fide densities
Density
Density distributions
Density estimation
Estimation bias
Estimation methods
Estimators
mean integrated squared error
Preliminary estimates
Sample size
Statistical theories
title Correction of Density Estimators that are not Densities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correction%20of%20Density%20Estimators%20that%20are%20not%20Densities&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=Glad,%20Ingrid%20K.&rft.date=2003-06&rft.volume=30&rft.issue=2&rft.spage=415&rft.epage=427&rft.pages=415-427&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/1467-9469.00339&rft_dat=%3Cjstor_cross%3E4616772%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4616772&rfr_iscdi=true