On the Validity of the Markov Interpretation of Path Diagrams of Gaussian Structural Equations Systems with Correlated Errors

Pearl's d-separation concept and the ensuing Markov property is applied to graphs which may have, between each two different vertices i and j, any subset of {i → j, i ← j, i ↔ j} as edges. The class of graphs so obtained is closed under marginalization. Furthermore, the approach permits a direc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 1999-09, Vol.26 (3), p.413-431
1. Verfasser: Koster, Jan T. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 431
container_issue 3
container_start_page 413
container_title Scandinavian journal of statistics
container_volume 26
creator Koster, Jan T. A.
description Pearl's d-separation concept and the ensuing Markov property is applied to graphs which may have, between each two different vertices i and j, any subset of {i → j, i ← j, i ↔ j} as edges. The class of graphs so obtained is closed under marginalization. Furthermore, the approach permits a direct proof of this theorem: "The distribution of a multivariate normal random vector satisfying a system of linear simultaneous equations is Markov w.r.t. the path diagram of the linear system".
doi_str_mv 10.1111/1467-9469.00157
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1111_1467_9469_00157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4616565</jstor_id><sourcerecordid>4616565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4397-b45701044dced47b39d7b2a4ba35f746d63418121e736909804680c9387784e53</originalsourceid><addsrcrecordid>eNqFUcGO0zAQtRBIlIUzFw45cM2uHTt2fESllF0WirYLHK1J4lAvaRJsd5cc-HcmDSpHLI3HnnlvNPOGkJeMnjM8F0xIlWoh9TmlLFePyOIUeUwWlFOeykIXT8mzEO4QIgUrFuT3pkviziZfoXW1i2PSN8f_R_A_-vvksovWD95GiK7vpuRniLvkrYPvHvZhCqzhEIKDLtlGf6jiwUObrH4ejoSQbMcQLQIfHNKWvfe2hWjrZOV978Nz8qSBNtgXf_0Z-fJudbt8n15v1pfLN9dpJbhWaSlyRRkVoq5sLVTJda3KDEQJPG-UkLXkOAzLmFVcaqoLKmRBK80LpQphc35GLua6le9D8LYxg3d78KNh1EzqmUkrM2lljuoh42pmeDvY6gQvWwjVXYhg7g2HTOI1ojGtNTqHxtEGNMG4EZyZXdxjsddzsQHZ0DYeusqFfz1kmRAZRZiYYQ-uteP_WjTbq812bvXVTMO-en-iCclkLqfZ0zntcBO_Tmncr5GKq9x8-7Q2N5m8_bC8wQf_A4jpsEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Validity of the Markov Interpretation of Path Diagrams of Gaussian Structural Equations Systems with Correlated Errors</title><source>Jstor Complete Legacy</source><source>RePEc</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Koster, Jan T. A.</creator><creatorcontrib>Koster, Jan T. A.</creatorcontrib><description>Pearl's d-separation concept and the ensuing Markov property is applied to graphs which may have, between each two different vertices i and j, any subset of {i → j, i ← j, i ↔ j} as edges. The class of graphs so obtained is closed under marginalization. Furthermore, the approach permits a direct proof of this theorem: "The distribution of a multivariate normal random vector satisfying a system of linear simultaneous equations is Markov w.r.t. the path diagram of the linear system".</description><identifier>ISSN: 0303-6898</identifier><identifier>EISSN: 1467-9469</identifier><identifier>DOI: 10.1111/1467-9469.00157</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers Ltd</publisher><subject>Covariance matrices ; d-separation ; Directed acyclic graphs ; Exact sciences and technology ; Gaussian equations system ; graph ; graphical model ; Linear equations ; linear structural equation model ; Marginalization ; Markov models ; Markov processes ; Markov property ; Mathematical independent variables ; Mathematics ; path diagram ; Probability and statistics ; Probability distributions ; Probability theory and stochastic processes ; Sciences and techniques of general use ; Statistical theories ; Stochastic analysis ; Structural equation models ; Vertices</subject><ispartof>Scandinavian journal of statistics, 1999-09, Vol.26 (3), p.413-431</ispartof><rights>Copyright 1999 Board of the Foundation of the Scandinavian Journal of Statistics</rights><rights>Board of the Foundation of the Scandinavian Journal of Statistics 1999</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4397-b45701044dced47b39d7b2a4ba35f746d63418121e736909804680c9387784e53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4616565$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4616565$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,3994,27901,27902,45550,45551,57992,57996,58225,58229</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1224420$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/blascjsta/v_3a26_3ay_3a1999_3ai_3a3_3ap_3a413-431.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Koster, Jan T. A.</creatorcontrib><title>On the Validity of the Markov Interpretation of Path Diagrams of Gaussian Structural Equations Systems with Correlated Errors</title><title>Scandinavian journal of statistics</title><description>Pearl's d-separation concept and the ensuing Markov property is applied to graphs which may have, between each two different vertices i and j, any subset of {i → j, i ← j, i ↔ j} as edges. The class of graphs so obtained is closed under marginalization. Furthermore, the approach permits a direct proof of this theorem: "The distribution of a multivariate normal random vector satisfying a system of linear simultaneous equations is Markov w.r.t. the path diagram of the linear system".</description><subject>Covariance matrices</subject><subject>d-separation</subject><subject>Directed acyclic graphs</subject><subject>Exact sciences and technology</subject><subject>Gaussian equations system</subject><subject>graph</subject><subject>graphical model</subject><subject>Linear equations</subject><subject>linear structural equation model</subject><subject>Marginalization</subject><subject>Markov models</subject><subject>Markov processes</subject><subject>Markov property</subject><subject>Mathematical independent variables</subject><subject>Mathematics</subject><subject>path diagram</subject><subject>Probability and statistics</subject><subject>Probability distributions</subject><subject>Probability theory and stochastic processes</subject><subject>Sciences and techniques of general use</subject><subject>Statistical theories</subject><subject>Stochastic analysis</subject><subject>Structural equation models</subject><subject>Vertices</subject><issn>0303-6898</issn><issn>1467-9469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFUcGO0zAQtRBIlIUzFw45cM2uHTt2fESllF0WirYLHK1J4lAvaRJsd5cc-HcmDSpHLI3HnnlvNPOGkJeMnjM8F0xIlWoh9TmlLFePyOIUeUwWlFOeykIXT8mzEO4QIgUrFuT3pkviziZfoXW1i2PSN8f_R_A_-vvksovWD95GiK7vpuRniLvkrYPvHvZhCqzhEIKDLtlGf6jiwUObrH4ejoSQbMcQLQIfHNKWvfe2hWjrZOV978Nz8qSBNtgXf_0Z-fJudbt8n15v1pfLN9dpJbhWaSlyRRkVoq5sLVTJda3KDEQJPG-UkLXkOAzLmFVcaqoLKmRBK80LpQphc35GLua6le9D8LYxg3d78KNh1EzqmUkrM2lljuoh42pmeDvY6gQvWwjVXYhg7g2HTOI1ojGtNTqHxtEGNMG4EZyZXdxjsddzsQHZ0DYeusqFfz1kmRAZRZiYYQ-uteP_WjTbq812bvXVTMO-en-iCclkLqfZ0zntcBO_Tmncr5GKq9x8-7Q2N5m8_bC8wQf_A4jpsEU</recordid><startdate>199909</startdate><enddate>199909</enddate><creator>Koster, Jan T. A.</creator><general>Blackwell Publishers Ltd</general><general>Blackwell Publishers</general><general>Blackwell</general><general>Danish Society for Theoretical Statistics</general><scope>BSCLL</scope><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199909</creationdate><title>On the Validity of the Markov Interpretation of Path Diagrams of Gaussian Structural Equations Systems with Correlated Errors</title><author>Koster, Jan T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4397-b45701044dced47b39d7b2a4ba35f746d63418121e736909804680c9387784e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Covariance matrices</topic><topic>d-separation</topic><topic>Directed acyclic graphs</topic><topic>Exact sciences and technology</topic><topic>Gaussian equations system</topic><topic>graph</topic><topic>graphical model</topic><topic>Linear equations</topic><topic>linear structural equation model</topic><topic>Marginalization</topic><topic>Markov models</topic><topic>Markov processes</topic><topic>Markov property</topic><topic>Mathematical independent variables</topic><topic>Mathematics</topic><topic>path diagram</topic><topic>Probability and statistics</topic><topic>Probability distributions</topic><topic>Probability theory and stochastic processes</topic><topic>Sciences and techniques of general use</topic><topic>Statistical theories</topic><topic>Stochastic analysis</topic><topic>Structural equation models</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koster, Jan T. A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><jtitle>Scandinavian journal of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koster, Jan T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Validity of the Markov Interpretation of Path Diagrams of Gaussian Structural Equations Systems with Correlated Errors</atitle><jtitle>Scandinavian journal of statistics</jtitle><date>1999-09</date><risdate>1999</risdate><volume>26</volume><issue>3</issue><spage>413</spage><epage>431</epage><pages>413-431</pages><issn>0303-6898</issn><eissn>1467-9469</eissn><abstract>Pearl's d-separation concept and the ensuing Markov property is applied to graphs which may have, between each two different vertices i and j, any subset of {i → j, i ← j, i ↔ j} as edges. The class of graphs so obtained is closed under marginalization. Furthermore, the approach permits a direct proof of this theorem: "The distribution of a multivariate normal random vector satisfying a system of linear simultaneous equations is Markov w.r.t. the path diagram of the linear system".</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers Ltd</pub><doi>10.1111/1467-9469.00157</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-6898
ispartof Scandinavian journal of statistics, 1999-09, Vol.26 (3), p.413-431
issn 0303-6898
1467-9469
language eng
recordid cdi_crossref_primary_10_1111_1467_9469_00157
source Jstor Complete Legacy; RePEc; Wiley Online Library Journals Frontfile Complete; Business Source Complete; JSTOR Mathematics & Statistics
subjects Covariance matrices
d-separation
Directed acyclic graphs
Exact sciences and technology
Gaussian equations system
graph
graphical model
Linear equations
linear structural equation model
Marginalization
Markov models
Markov processes
Markov property
Mathematical independent variables
Mathematics
path diagram
Probability and statistics
Probability distributions
Probability theory and stochastic processes
Sciences and techniques of general use
Statistical theories
Stochastic analysis
Structural equation models
Vertices
title On the Validity of the Markov Interpretation of Path Diagrams of Gaussian Structural Equations Systems with Correlated Errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A07%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Validity%20of%20the%20Markov%20Interpretation%20of%20Path%20Diagrams%20of%20Gaussian%20Structural%20Equations%20Systems%20with%20Correlated%20Errors&rft.jtitle=Scandinavian%20journal%20of%20statistics&rft.au=Koster,%20Jan%20T.%20A.&rft.date=1999-09&rft.volume=26&rft.issue=3&rft.spage=413&rft.epage=431&rft.pages=413-431&rft.issn=0303-6898&rft.eissn=1467-9469&rft_id=info:doi/10.1111/1467-9469.00157&rft_dat=%3Cjstor_cross%3E4616565%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=4616565&rfr_iscdi=true