Physiological responses of the freshwater N 2 -fixing cyanobacterium Raphidiopsis raciborskii to Fe and N availabilities
The cyanobacterium Raphidiopsis raciborskii is of environmental and social concern in view of its toxicity, bloom-forming characteristics and increasingly widespread occurrence. However, while availability of macronutrients and micronutrients such as N and Fe are critically important for the growth...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2019-04, Vol.21 (4), p.1211-1223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cyanobacterium Raphidiopsis raciborskii is of environmental and social concern in view of its toxicity, bloom-forming characteristics and increasingly widespread occurrence. However, while availability of macronutrients and micronutrients such as N and Fe are critically important for the growth and metabolism of this organism, the physiological response of toxic and non-toxic strains of R. raciborskii to varying Fe and N availabilities remains unclear. By determining physiological parameters as a function of Fe and N availability, we demonstrate that R. raciborskii growth and N
-fixing activity are facilitated at higher Fe availability under N
-limited conditions with faster growth of the CS-506 (cylindrospermopsin-producing) strain compared with that of CS-509 (the non-toxic) strain. Radiolabelled Fe uptake assays indicated that R. raciborskii acclimated under Fe-limited conditions acquires Fe at significantly higher rates than under Fe replete conditions, principally via unchelated Fe(II) generated as a result of photoreduction of complexed Fe(III). While N
-fixation of both strains occurred during both day and night, the CS-506 strain overall exhibited higher N
-fixing and Fe uptake rates than the CS-509 strain under N-deficient and Fe-limited conditions. The findings of this study highlight that Fe availability is of significance for the ecological advantage of CS-506 over CS-509 in N-deficient freshwaters. |
---|---|
ISSN: | 1462-2912 1462-2920 |
DOI: | 10.1111/1462-2920.14545 |