Statistical Delay Performance Analysis for URLLC in Uplink Cell-Free Massive MIMO Systems: A Stochastic Network Calculus Perspective

Cell-free (CF) massive multiple-input multiple-output (mMIMO), which has been considered as a promising technology to achieve ultra-reliable low latency communications (URLLC), emphasizes extreme and rare events instead of well studied average performance. In this paper, we analyze the statistical d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-12, p.1-1
Hauptverfasser: Chong, Baolin, Lu, Hancheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on wireless communications
container_volume
creator Chong, Baolin
Lu, Hancheng
description Cell-free (CF) massive multiple-input multiple-output (mMIMO), which has been considered as a promising technology to achieve ultra-reliable low latency communications (URLLC), emphasizes extreme and rare events instead of well studied average performance. In this paper, we analyze the statistical delay performance in uplink CF mMIMO-aided URLLC systems, specifically characterizing the tail of the delay distribution. Firstly, we derive the SINR distribution in a user-centric uplink CF mMIMO system using moment-matching techniques and log-normal approximation. Subsequently, the average decoding error probability (DEP) with finite blocklength coding is studied based on the derived distribution, and an upper bound on the delay violation probability (DVP) is analyzed using stochastic network calculus (SNC). To provide a clearer representation of the bound on DVP, a closed-form upper bound for the average DEP is derived. Furthermore, we propose a rate adaptive scheme based on SNC to minimize the DVP. Numerous numerical results validate the accuracy of the derived SINR distribution and the upper bound on average DEP. Besides, CF mMIMO systems exhibit significant gains compared to mMIMO systems in terms of statistical delay performance, as the distributed deployment of numerous APs can effectively compensate for performance degradation caused by interference and increased arrival rates.
doi_str_mv 10.1109/TWC.2024.3506035
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2024_3506035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10780954</ieee_id><sourcerecordid>10_1109_TWC_2024_3506035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c624-e7b4fc7aac339e931c1686e41cbc1bce6b4d75564f583fb7bf1c307f5f168bd53</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqWwMzD4D6TY8VfCVgUKlVKKaCvGyHHPwuAmVZyCsvPDSVQGpjud3uc96UHompIJpSS9Xb9lk5jEfMIEkYSJEzSiQiRRHPPkdNiZjGis5Dm6COGDEKqkECP0s2p160LrjPb4Hrzu8As0tm52ujKAp5X2XXAB9xe8ec3zDLsKb_beVZ84A--jWQOAFzoE99XP-WKJV11oYRfu8BSv2tq866EdP0P7XTc9pL05-EMY3oQ9mLbnLtGZ1T7A1d8co_XsYZ09RfnycZ5N88jImEegSm6N0towlkLKqKEykcCpKQ0tDciSb5UQkluRMFuq0lLDiLLC9rlyK9gYkWOtaeoQGrDFvnE73XQFJcUgseglFoPE4k9ij9wcEQcA_-IqIang7Bfb-G-2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical Delay Performance Analysis for URLLC in Uplink Cell-Free Massive MIMO Systems: A Stochastic Network Calculus Perspective</title><source>IEEE Electronic Library (IEL)</source><creator>Chong, Baolin ; Lu, Hancheng</creator><creatorcontrib>Chong, Baolin ; Lu, Hancheng</creatorcontrib><description>Cell-free (CF) massive multiple-input multiple-output (mMIMO), which has been considered as a promising technology to achieve ultra-reliable low latency communications (URLLC), emphasizes extreme and rare events instead of well studied average performance. In this paper, we analyze the statistical delay performance in uplink CF mMIMO-aided URLLC systems, specifically characterizing the tail of the delay distribution. Firstly, we derive the SINR distribution in a user-centric uplink CF mMIMO system using moment-matching techniques and log-normal approximation. Subsequently, the average decoding error probability (DEP) with finite blocklength coding is studied based on the derived distribution, and an upper bound on the delay violation probability (DVP) is analyzed using stochastic network calculus (SNC). To provide a clearer representation of the bound on DVP, a closed-form upper bound for the average DEP is derived. Furthermore, we propose a rate adaptive scheme based on SNC to minimize the DVP. Numerous numerical results validate the accuracy of the derived SINR distribution and the upper bound on average DEP. Besides, CF mMIMO systems exhibit significant gains compared to mMIMO systems in terms of statistical delay performance, as the distributed deployment of numerous APs can effectively compensate for performance degradation caused by interference and increased arrival rates.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3506035</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cell-free massive multiple-input multiple-output ; Channel estimation ; Decoding ; Delays ; Interference ; Reliability ; Signal to noise ratio ; statistical delay performance ; stochastic network calculus ; Ultra reliable low latency communication ; Uplink ; Upper bound ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2024-12, p.1-1</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8302-4996 ; 0009-0000-2562-3966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10780954$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10780954$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chong, Baolin</creatorcontrib><creatorcontrib>Lu, Hancheng</creatorcontrib><title>Statistical Delay Performance Analysis for URLLC in Uplink Cell-Free Massive MIMO Systems: A Stochastic Network Calculus Perspective</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Cell-free (CF) massive multiple-input multiple-output (mMIMO), which has been considered as a promising technology to achieve ultra-reliable low latency communications (URLLC), emphasizes extreme and rare events instead of well studied average performance. In this paper, we analyze the statistical delay performance in uplink CF mMIMO-aided URLLC systems, specifically characterizing the tail of the delay distribution. Firstly, we derive the SINR distribution in a user-centric uplink CF mMIMO system using moment-matching techniques and log-normal approximation. Subsequently, the average decoding error probability (DEP) with finite blocklength coding is studied based on the derived distribution, and an upper bound on the delay violation probability (DVP) is analyzed using stochastic network calculus (SNC). To provide a clearer representation of the bound on DVP, a closed-form upper bound for the average DEP is derived. Furthermore, we propose a rate adaptive scheme based on SNC to minimize the DVP. Numerous numerical results validate the accuracy of the derived SINR distribution and the upper bound on average DEP. Besides, CF mMIMO systems exhibit significant gains compared to mMIMO systems in terms of statistical delay performance, as the distributed deployment of numerous APs can effectively compensate for performance degradation caused by interference and increased arrival rates.</description><subject>Cell-free massive multiple-input multiple-output</subject><subject>Channel estimation</subject><subject>Decoding</subject><subject>Delays</subject><subject>Interference</subject><subject>Reliability</subject><subject>Signal to noise ratio</subject><subject>statistical delay performance</subject><subject>stochastic network calculus</subject><subject>Ultra reliable low latency communication</subject><subject>Uplink</subject><subject>Upper bound</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqWwMzD4D6TY8VfCVgUKlVKKaCvGyHHPwuAmVZyCsvPDSVQGpjud3uc96UHompIJpSS9Xb9lk5jEfMIEkYSJEzSiQiRRHPPkdNiZjGis5Dm6COGDEKqkECP0s2p160LrjPb4Hrzu8As0tm52ujKAp5X2XXAB9xe8ec3zDLsKb_beVZ84A--jWQOAFzoE99XP-WKJV11oYRfu8BSv2tq866EdP0P7XTc9pL05-EMY3oQ9mLbnLtGZ1T7A1d8co_XsYZ09RfnycZ5N88jImEegSm6N0towlkLKqKEykcCpKQ0tDciSb5UQkluRMFuq0lLDiLLC9rlyK9gYkWOtaeoQGrDFvnE73XQFJcUgseglFoPE4k9ij9wcEQcA_-IqIang7Bfb-G-2</recordid><startdate>20241205</startdate><enddate>20241205</enddate><creator>Chong, Baolin</creator><creator>Lu, Hancheng</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8302-4996</orcidid><orcidid>https://orcid.org/0009-0000-2562-3966</orcidid></search><sort><creationdate>20241205</creationdate><title>Statistical Delay Performance Analysis for URLLC in Uplink Cell-Free Massive MIMO Systems: A Stochastic Network Calculus Perspective</title><author>Chong, Baolin ; Lu, Hancheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c624-e7b4fc7aac339e931c1686e41cbc1bce6b4d75564f583fb7bf1c307f5f168bd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cell-free massive multiple-input multiple-output</topic><topic>Channel estimation</topic><topic>Decoding</topic><topic>Delays</topic><topic>Interference</topic><topic>Reliability</topic><topic>Signal to noise ratio</topic><topic>statistical delay performance</topic><topic>stochastic network calculus</topic><topic>Ultra reliable low latency communication</topic><topic>Uplink</topic><topic>Upper bound</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chong, Baolin</creatorcontrib><creatorcontrib>Lu, Hancheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chong, Baolin</au><au>Lu, Hancheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical Delay Performance Analysis for URLLC in Uplink Cell-Free Massive MIMO Systems: A Stochastic Network Calculus Perspective</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-12-05</date><risdate>2024</risdate><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Cell-free (CF) massive multiple-input multiple-output (mMIMO), which has been considered as a promising technology to achieve ultra-reliable low latency communications (URLLC), emphasizes extreme and rare events instead of well studied average performance. In this paper, we analyze the statistical delay performance in uplink CF mMIMO-aided URLLC systems, specifically characterizing the tail of the delay distribution. Firstly, we derive the SINR distribution in a user-centric uplink CF mMIMO system using moment-matching techniques and log-normal approximation. Subsequently, the average decoding error probability (DEP) with finite blocklength coding is studied based on the derived distribution, and an upper bound on the delay violation probability (DVP) is analyzed using stochastic network calculus (SNC). To provide a clearer representation of the bound on DVP, a closed-form upper bound for the average DEP is derived. Furthermore, we propose a rate adaptive scheme based on SNC to minimize the DVP. Numerous numerical results validate the accuracy of the derived SINR distribution and the upper bound on average DEP. Besides, CF mMIMO systems exhibit significant gains compared to mMIMO systems in terms of statistical delay performance, as the distributed deployment of numerous APs can effectively compensate for performance degradation caused by interference and increased arrival rates.</abstract><pub>IEEE</pub><doi>10.1109/TWC.2024.3506035</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-8302-4996</orcidid><orcidid>https://orcid.org/0009-0000-2562-3966</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-12, p.1-1
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2024_3506035
source IEEE Electronic Library (IEL)
subjects Cell-free massive multiple-input multiple-output
Channel estimation
Decoding
Delays
Interference
Reliability
Signal to noise ratio
statistical delay performance
stochastic network calculus
Ultra reliable low latency communication
Uplink
Upper bound
Wireless communication
title Statistical Delay Performance Analysis for URLLC in Uplink Cell-Free Massive MIMO Systems: A Stochastic Network Calculus Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A04%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20Delay%20Performance%20Analysis%20for%20URLLC%20in%20Uplink%20Cell-Free%20Massive%20MIMO%20Systems:%20A%20Stochastic%20Network%20Calculus%20Perspective&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Chong,%20Baolin&rft.date=2024-12-05&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3506035&rft_dat=%3Ccrossref_RIE%3E10_1109_TWC_2024_3506035%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10780954&rfr_iscdi=true