Integrating Pre-Trained Language Model With Physical Layer Communications
The burgeoning field of on-device AI communication, where devices exchange information directly through embedded foundation models, such as language models (LMs), requires robust, efficient, and generalizable communication frameworks. However, integrating these frameworks with existing wireless syst...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-11, Vol.23 (11), p.17266-17278 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17278 |
---|---|
container_issue | 11 |
container_start_page | 17266 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Lee, Ju-Hyung Lee, Dong-Ho Lee, Joohan Pujara, Jay |
description | The burgeoning field of on-device AI communication, where devices exchange information directly through embedded foundation models, such as language models (LMs), requires robust, efficient, and generalizable communication frameworks. However, integrating these frameworks with existing wireless systems and effectively managing noise and bit errors pose significant challenges. In this work, we introduce a practical on-device AI communication framework, integrated with physical layer (PHY) communication functions, demonstrated through its performance on a link-level simulator. Our framework incorporates end-to-end training with channel noise to enhance resilience, incorporates vector quantized variational autoencoders (VQ-VAE) for efficient and robust communication, and utilizes pre-trained encoder-decoder transformers for improved generalization capabilities. Simulations, across various communication scenarios, reveal that our framework achieves a 50% reduction in transmission size while demonstrating substantial generalization ability and noise robustness under standardized 3GPP channel models. |
doi_str_mv | 10.1109/TWC.2024.3452481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2024_3452481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10670056</ieee_id><sourcerecordid>3127777899</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-7abcc2bd3f13dff0bf16c5542ce5fc231074ed51081d566842f80e8e4bbc4f263</originalsourceid><addsrcrecordid>eNpNkDtPwzAQxy0EEqWwMzBEYk7wO-mIIh6ViuhQ1NFynHPqqnWKnQz99rhqB2651__udD-EHgkuCMGzl9W6LiimvGBcUF6RKzQhQlQ5Tcn1KWYyJ7SUt-guxi3GpJRCTNB87gfogh6c77JlgHwVtPPQZgvtu1F3kH31LeyytRs22XJzjM7oXWoeIWR1v9-PPhUG1_t4j26s3kV4uPgp-nl_W9Wf-eL7Y16_LnJDSTnkpW6MoU3LLGGttbixRBohODUgrKGM4JJDKwiuSCukrDi1FYYKeNMYbqlkU_R83nsI_e8IcVDbfgw-nVQsPZisms2SCp9VJvQxBrDqENxeh6MiWJ2AqQRMnYCpC7A08nQecQDwTy5LjIVkf5xMZuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3127777899</pqid></control><display><type>article</type><title>Integrating Pre-Trained Language Model With Physical Layer Communications</title><source>IEEE/IET Electronic Library</source><creator>Lee, Ju-Hyung ; Lee, Dong-Ho ; Lee, Joohan ; Pujara, Jay</creator><creatorcontrib>Lee, Ju-Hyung ; Lee, Dong-Ho ; Lee, Joohan ; Pujara, Jay</creatorcontrib><description>The burgeoning field of on-device AI communication, where devices exchange information directly through embedded foundation models, such as language models (LMs), requires robust, efficient, and generalizable communication frameworks. However, integrating these frameworks with existing wireless systems and effectively managing noise and bit errors pose significant challenges. In this work, we introduce a practical on-device AI communication framework, integrated with physical layer (PHY) communication functions, demonstrated through its performance on a link-level simulator. Our framework incorporates end-to-end training with channel noise to enhance resilience, incorporates vector quantized variational autoencoders (VQ-VAE) for efficient and robust communication, and utilizes pre-trained encoder-decoder transformers for improved generalization capabilities. Simulations, across various communication scenarios, reveal that our framework achieves a 50% reduction in transmission size while demonstrating substantial generalization ability and noise robustness under standardized 3GPP channel models.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3452481</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Channel noise ; Data models ; Decoding ; Embedded foundations ; Encoders-Decoders ; language model ; link-level simulation ; natural language processing (NLP) ; Noise ; Physical layer communications ; Robustness ; Semantics ; Vectors ; VQ-VAE ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2024-11, Vol.23 (11), p.17266-17278</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-7abcc2bd3f13dff0bf16c5542ce5fc231074ed51081d566842f80e8e4bbc4f263</cites><orcidid>0000-0003-1947-0283 ; 0009-0005-6959-7516</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10670056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10670056$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Ju-Hyung</creatorcontrib><creatorcontrib>Lee, Dong-Ho</creatorcontrib><creatorcontrib>Lee, Joohan</creatorcontrib><creatorcontrib>Pujara, Jay</creatorcontrib><title>Integrating Pre-Trained Language Model With Physical Layer Communications</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>The burgeoning field of on-device AI communication, where devices exchange information directly through embedded foundation models, such as language models (LMs), requires robust, efficient, and generalizable communication frameworks. However, integrating these frameworks with existing wireless systems and effectively managing noise and bit errors pose significant challenges. In this work, we introduce a practical on-device AI communication framework, integrated with physical layer (PHY) communication functions, demonstrated through its performance on a link-level simulator. Our framework incorporates end-to-end training with channel noise to enhance resilience, incorporates vector quantized variational autoencoders (VQ-VAE) for efficient and robust communication, and utilizes pre-trained encoder-decoder transformers for improved generalization capabilities. Simulations, across various communication scenarios, reveal that our framework achieves a 50% reduction in transmission size while demonstrating substantial generalization ability and noise robustness under standardized 3GPP channel models.</description><subject>Artificial intelligence</subject><subject>Channel noise</subject><subject>Data models</subject><subject>Decoding</subject><subject>Embedded foundations</subject><subject>Encoders-Decoders</subject><subject>language model</subject><subject>link-level simulation</subject><subject>natural language processing (NLP)</subject><subject>Noise</subject><subject>Physical layer communications</subject><subject>Robustness</subject><subject>Semantics</subject><subject>Vectors</subject><subject>VQ-VAE</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAQxy0EEqWwMzBEYk7wO-mIIh6ViuhQ1NFynHPqqnWKnQz99rhqB2651__udD-EHgkuCMGzl9W6LiimvGBcUF6RKzQhQlQ5Tcn1KWYyJ7SUt-guxi3GpJRCTNB87gfogh6c77JlgHwVtPPQZgvtu1F3kH31LeyytRs22XJzjM7oXWoeIWR1v9-PPhUG1_t4j26s3kV4uPgp-nl_W9Wf-eL7Y16_LnJDSTnkpW6MoU3LLGGttbixRBohODUgrKGM4JJDKwiuSCukrDi1FYYKeNMYbqlkU_R83nsI_e8IcVDbfgw-nVQsPZisms2SCp9VJvQxBrDqENxeh6MiWJ2AqQRMnYCpC7A08nQecQDwTy5LjIVkf5xMZuc</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Lee, Ju-Hyung</creator><creator>Lee, Dong-Ho</creator><creator>Lee, Joohan</creator><creator>Pujara, Jay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1947-0283</orcidid><orcidid>https://orcid.org/0009-0005-6959-7516</orcidid></search><sort><creationdate>202411</creationdate><title>Integrating Pre-Trained Language Model With Physical Layer Communications</title><author>Lee, Ju-Hyung ; Lee, Dong-Ho ; Lee, Joohan ; Pujara, Jay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-7abcc2bd3f13dff0bf16c5542ce5fc231074ed51081d566842f80e8e4bbc4f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Channel noise</topic><topic>Data models</topic><topic>Decoding</topic><topic>Embedded foundations</topic><topic>Encoders-Decoders</topic><topic>language model</topic><topic>link-level simulation</topic><topic>natural language processing (NLP)</topic><topic>Noise</topic><topic>Physical layer communications</topic><topic>Robustness</topic><topic>Semantics</topic><topic>Vectors</topic><topic>VQ-VAE</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ju-Hyung</creatorcontrib><creatorcontrib>Lee, Dong-Ho</creatorcontrib><creatorcontrib>Lee, Joohan</creatorcontrib><creatorcontrib>Pujara, Jay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Ju-Hyung</au><au>Lee, Dong-Ho</au><au>Lee, Joohan</au><au>Pujara, Jay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Pre-Trained Language Model With Physical Layer Communications</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-11</date><risdate>2024</risdate><volume>23</volume><issue>11</issue><spage>17266</spage><epage>17278</epage><pages>17266-17278</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>The burgeoning field of on-device AI communication, where devices exchange information directly through embedded foundation models, such as language models (LMs), requires robust, efficient, and generalizable communication frameworks. However, integrating these frameworks with existing wireless systems and effectively managing noise and bit errors pose significant challenges. In this work, we introduce a practical on-device AI communication framework, integrated with physical layer (PHY) communication functions, demonstrated through its performance on a link-level simulator. Our framework incorporates end-to-end training with channel noise to enhance resilience, incorporates vector quantized variational autoencoders (VQ-VAE) for efficient and robust communication, and utilizes pre-trained encoder-decoder transformers for improved generalization capabilities. Simulations, across various communication scenarios, reveal that our framework achieves a 50% reduction in transmission size while demonstrating substantial generalization ability and noise robustness under standardized 3GPP channel models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3452481</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1947-0283</orcidid><orcidid>https://orcid.org/0009-0005-6959-7516</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-11, Vol.23 (11), p.17266-17278 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2024_3452481 |
source | IEEE/IET Electronic Library |
subjects | Artificial intelligence Channel noise Data models Decoding Embedded foundations Encoders-Decoders language model link-level simulation natural language processing (NLP) Noise Physical layer communications Robustness Semantics Vectors VQ-VAE Wireless communication |
title | Integrating Pre-Trained Language Model With Physical Layer Communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T20%3A16%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Pre-Trained%20Language%20Model%20With%20Physical%20Layer%20Communications&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Lee,%20Ju-Hyung&rft.date=2024-11&rft.volume=23&rft.issue=11&rft.spage=17266&rft.epage=17278&rft.pages=17266-17278&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3452481&rft_dat=%3Cproquest_RIE%3E3127777899%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3127777899&rft_id=info:pmid/&rft_ieee_id=10670056&rfr_iscdi=true |