Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework
A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central proce...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-10, Vol.23 (10), p.12888-12903 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12903 |
---|---|
container_issue | 10 |
container_start_page | 12888 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Lin, Qingfeng Li, Yang Kou, Wei-Bin Chang, Tsung-Hui Wu, Yik-Chung |
description | A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central processing unit (CPU) are connected by capacity-limited fronthauls and the signals at the APs need to be compressed/quantized before they are forwarded to the CPU. However, existing approaches treat the compression/quantization and activity detection as separate tasks, which makes it difficult to achieve global system optimality. To tackle the above problem, this paper proposes an augmented model-driven end-to-end learning framework which jointly optimizes the compression modules, quantization modules at the APs, and the decompression module and detection module at the CPU. Specifically, deep unfolding is leveraged for designing the detection module in order to inherit the domain knowledge derived from the optimization algorithm, and other modules are constructed by judiciously designed neural network architectures for improving the learning capability. Furthermore, we design an enhanced scheme so that the proposed framework is adaptable to different compression rates. We demonstrate numerically that the proposed framework significantly reduces the computational complexity and achieves better detection performance than the conventional approaches. Moreover, it costs a much smaller number of bits on the fronthauls while still maintaining the detection performance. |
doi_str_mv | 10.1109/TWC.2024.3396798 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2024_3396798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10529194</ieee_id><sourcerecordid>3115571892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-cba035df8ad451505d8918e12a07a4eff3a451930afdd6924b6af86dd6ec58493</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxTdGExG9e_DQxHOxH9vd1htZQEkgXDAeN2V3Sopsi90Fw8W_3RI4eHqTee_NJL8keaRkQClRL8vPYsAISwecqyxX8irpUSEkZiyV16eZZ5iyPLtN7tp2QwjNMyF6yW_hm2bvbKU76x0eG2MrC65Dw6qzB9sd0Qg6qE4mMj6gArZbPAkAaK7b1h6iTueLVzR0aLhfN7EJNZr7GrZ4FKLt0NjVuPM4CpqBDs66NZoE3cCPD1_3yY3R2xYeLtpPPibjZfGOZ4u3aTGc4YqlosPVShMuaiN1nQoqiKilohIo0yTXKRjDddwrTrSp60yxdJVpI7M4QyVkqng_eT7f3QX_vYe2Kzd-H1x8WXIaOeVUKhZT5Jyqgm_bAKbcBdvocCwpKU-Uy0i5PFEuL5Rj5elcsQDwLy6Yoirlf66eeTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115571892</pqid></control><display><type>article</type><title>Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Qingfeng ; Li, Yang ; Kou, Wei-Bin ; Chang, Tsung-Hui ; Wu, Yik-Chung</creator><creatorcontrib>Lin, Qingfeng ; Li, Yang ; Kou, Wei-Bin ; Chang, Tsung-Hui ; Wu, Yik-Chung</creatorcontrib><description>A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central processing unit (CPU) are connected by capacity-limited fronthauls and the signals at the APs need to be compressed/quantized before they are forwarded to the CPU. However, existing approaches treat the compression/quantization and activity detection as separate tasks, which makes it difficult to achieve global system optimality. To tackle the above problem, this paper proposes an augmented model-driven end-to-end learning framework which jointly optimizes the compression modules, quantization modules at the APs, and the decompression module and detection module at the CPU. Specifically, deep unfolding is leveraged for designing the detection module in order to inherit the domain knowledge derived from the optimization algorithm, and other modules are constructed by judiciously designed neural network architectures for improving the learning capability. Furthermore, we design an enhanced scheme so that the proposed framework is adaptable to different compression rates. We demonstrate numerically that the proposed framework significantly reduces the computational complexity and achieves better detection performance than the conventional approaches. Moreover, it costs a much smaller number of bits on the fronthauls while still maintaining the detection performance.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3396798</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity detection ; Algorithms ; capacity-limited fronthauls ; cell-free massive MIMO ; Central Processing Unit ; Central processing units ; communication efficiency ; CPUs ; Design optimization ; end-to-end learning framework ; Machine learning ; massive machine-type communications (mMTC) ; Massive MIMO ; Modules ; Neural networks ; Quantization (signal) ; Task analysis ; Training ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.12888-12903</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-cba035df8ad451505d8918e12a07a4eff3a451930afdd6924b6af86dd6ec58493</cites><orcidid>0000-0001-9817-791X ; 0000-0002-2738-0387 ; 0000-0003-1349-2764 ; 0000-0003-0181-7437 ; 0000-0003-1112-057X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10529194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10529194$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Qingfeng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Kou, Wei-Bin</creatorcontrib><creatorcontrib>Chang, Tsung-Hui</creatorcontrib><creatorcontrib>Wu, Yik-Chung</creatorcontrib><title>Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central processing unit (CPU) are connected by capacity-limited fronthauls and the signals at the APs need to be compressed/quantized before they are forwarded to the CPU. However, existing approaches treat the compression/quantization and activity detection as separate tasks, which makes it difficult to achieve global system optimality. To tackle the above problem, this paper proposes an augmented model-driven end-to-end learning framework which jointly optimizes the compression modules, quantization modules at the APs, and the decompression module and detection module at the CPU. Specifically, deep unfolding is leveraged for designing the detection module in order to inherit the domain knowledge derived from the optimization algorithm, and other modules are constructed by judiciously designed neural network architectures for improving the learning capability. Furthermore, we design an enhanced scheme so that the proposed framework is adaptable to different compression rates. We demonstrate numerically that the proposed framework significantly reduces the computational complexity and achieves better detection performance than the conventional approaches. Moreover, it costs a much smaller number of bits on the fronthauls while still maintaining the detection performance.</description><subject>Activity detection</subject><subject>Algorithms</subject><subject>capacity-limited fronthauls</subject><subject>cell-free massive MIMO</subject><subject>Central Processing Unit</subject><subject>Central processing units</subject><subject>communication efficiency</subject><subject>CPUs</subject><subject>Design optimization</subject><subject>end-to-end learning framework</subject><subject>Machine learning</subject><subject>massive machine-type communications (mMTC)</subject><subject>Massive MIMO</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Quantization (signal)</subject><subject>Task analysis</subject><subject>Training</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxTdGExG9e_DQxHOxH9vd1htZQEkgXDAeN2V3Sopsi90Fw8W_3RI4eHqTee_NJL8keaRkQClRL8vPYsAISwecqyxX8irpUSEkZiyV16eZZ5iyPLtN7tp2QwjNMyF6yW_hm2bvbKU76x0eG2MrC65Dw6qzB9sd0Qg6qE4mMj6gArZbPAkAaK7b1h6iTueLVzR0aLhfN7EJNZr7GrZ4FKLt0NjVuPM4CpqBDs66NZoE3cCPD1_3yY3R2xYeLtpPPibjZfGOZ4u3aTGc4YqlosPVShMuaiN1nQoqiKilohIo0yTXKRjDddwrTrSp60yxdJVpI7M4QyVkqng_eT7f3QX_vYe2Kzd-H1x8WXIaOeVUKhZT5Jyqgm_bAKbcBdvocCwpKU-Uy0i5PFEuL5Rj5elcsQDwLy6Yoirlf66eeTo</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Lin, Qingfeng</creator><creator>Li, Yang</creator><creator>Kou, Wei-Bin</creator><creator>Chang, Tsung-Hui</creator><creator>Wu, Yik-Chung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9817-791X</orcidid><orcidid>https://orcid.org/0000-0002-2738-0387</orcidid><orcidid>https://orcid.org/0000-0003-1349-2764</orcidid><orcidid>https://orcid.org/0000-0003-0181-7437</orcidid><orcidid>https://orcid.org/0000-0003-1112-057X</orcidid></search><sort><creationdate>20241001</creationdate><title>Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework</title><author>Lin, Qingfeng ; Li, Yang ; Kou, Wei-Bin ; Chang, Tsung-Hui ; Wu, Yik-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-cba035df8ad451505d8918e12a07a4eff3a451930afdd6924b6af86dd6ec58493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activity detection</topic><topic>Algorithms</topic><topic>capacity-limited fronthauls</topic><topic>cell-free massive MIMO</topic><topic>Central Processing Unit</topic><topic>Central processing units</topic><topic>communication efficiency</topic><topic>CPUs</topic><topic>Design optimization</topic><topic>end-to-end learning framework</topic><topic>Machine learning</topic><topic>massive machine-type communications (mMTC)</topic><topic>Massive MIMO</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Quantization (signal)</topic><topic>Task analysis</topic><topic>Training</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qingfeng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Kou, Wei-Bin</creatorcontrib><creatorcontrib>Chang, Tsung-Hui</creatorcontrib><creatorcontrib>Wu, Yik-Chung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Qingfeng</au><au>Li, Yang</au><au>Kou, Wei-Bin</au><au>Chang, Tsung-Hui</au><au>Wu, Yik-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>23</volume><issue>10</issue><spage>12888</spage><epage>12903</epage><pages>12888-12903</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central processing unit (CPU) are connected by capacity-limited fronthauls and the signals at the APs need to be compressed/quantized before they are forwarded to the CPU. However, existing approaches treat the compression/quantization and activity detection as separate tasks, which makes it difficult to achieve global system optimality. To tackle the above problem, this paper proposes an augmented model-driven end-to-end learning framework which jointly optimizes the compression modules, quantization modules at the APs, and the decompression module and detection module at the CPU. Specifically, deep unfolding is leveraged for designing the detection module in order to inherit the domain knowledge derived from the optimization algorithm, and other modules are constructed by judiciously designed neural network architectures for improving the learning capability. Furthermore, we design an enhanced scheme so that the proposed framework is adaptable to different compression rates. We demonstrate numerically that the proposed framework significantly reduces the computational complexity and achieves better detection performance than the conventional approaches. Moreover, it costs a much smaller number of bits on the fronthauls while still maintaining the detection performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3396798</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9817-791X</orcidid><orcidid>https://orcid.org/0000-0002-2738-0387</orcidid><orcidid>https://orcid.org/0000-0003-1349-2764</orcidid><orcidid>https://orcid.org/0000-0003-0181-7437</orcidid><orcidid>https://orcid.org/0000-0003-1112-057X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.12888-12903 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2024_3396798 |
source | IEEE Electronic Library (IEL) |
subjects | Activity detection Algorithms capacity-limited fronthauls cell-free massive MIMO Central Processing Unit Central processing units communication efficiency CPUs Design optimization end-to-end learning framework Machine learning massive machine-type communications (mMTC) Massive MIMO Modules Neural networks Quantization (signal) Task analysis Training Wireless communication |
title | Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication-Efficient%20Activity%20Detection%20for%20Cell-Free%20Massive%20MIMO:%20An%20Augmented%20Model-Driven%20End-to-End%20Learning%20Framework&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Lin,%20Qingfeng&rft.date=2024-10-01&rft.volume=23&rft.issue=10&rft.spage=12888&rft.epage=12903&rft.pages=12888-12903&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3396798&rft_dat=%3Cproquest_RIE%3E3115571892%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115571892&rft_id=info:pmid/&rft_ieee_id=10529194&rfr_iscdi=true |