Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework

A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-10, Vol.23 (10), p.12888-12903
Hauptverfasser: Lin, Qingfeng, Li, Yang, Kou, Wei-Bin, Chang, Tsung-Hui, Wu, Yik-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12903
container_issue 10
container_start_page 12888
container_title IEEE transactions on wireless communications
container_volume 23
creator Lin, Qingfeng
Li, Yang
Kou, Wei-Bin
Chang, Tsung-Hui
Wu, Yik-Chung
description A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central processing unit (CPU) are connected by capacity-limited fronthauls and the signals at the APs need to be compressed/quantized before they are forwarded to the CPU. However, existing approaches treat the compression/quantization and activity detection as separate tasks, which makes it difficult to achieve global system optimality. To tackle the above problem, this paper proposes an augmented model-driven end-to-end learning framework which jointly optimizes the compression modules, quantization modules at the APs, and the decompression module and detection module at the CPU. Specifically, deep unfolding is leveraged for designing the detection module in order to inherit the domain knowledge derived from the optimization algorithm, and other modules are constructed by judiciously designed neural network architectures for improving the learning capability. Furthermore, we design an enhanced scheme so that the proposed framework is adaptable to different compression rates. We demonstrate numerically that the proposed framework significantly reduces the computational complexity and achieves better detection performance than the conventional approaches. Moreover, it costs a much smaller number of bits on the fronthauls while still maintaining the detection performance.
doi_str_mv 10.1109/TWC.2024.3396798
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2024_3396798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10529194</ieee_id><sourcerecordid>3115571892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-cba035df8ad451505d8918e12a07a4eff3a451930afdd6924b6af86dd6ec58493</originalsourceid><addsrcrecordid>eNpNkM1PAjEQxTdGExG9e_DQxHOxH9vd1htZQEkgXDAeN2V3Sopsi90Fw8W_3RI4eHqTee_NJL8keaRkQClRL8vPYsAISwecqyxX8irpUSEkZiyV16eZZ5iyPLtN7tp2QwjNMyF6yW_hm2bvbKU76x0eG2MrC65Dw6qzB9sd0Qg6qE4mMj6gArZbPAkAaK7b1h6iTueLVzR0aLhfN7EJNZr7GrZ4FKLt0NjVuPM4CpqBDs66NZoE3cCPD1_3yY3R2xYeLtpPPibjZfGOZ4u3aTGc4YqlosPVShMuaiN1nQoqiKilohIo0yTXKRjDddwrTrSp60yxdJVpI7M4QyVkqng_eT7f3QX_vYe2Kzd-H1x8WXIaOeVUKhZT5Jyqgm_bAKbcBdvocCwpKU-Uy0i5PFEuL5Rj5elcsQDwLy6Yoirlf66eeTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115571892</pqid></control><display><type>article</type><title>Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Lin, Qingfeng ; Li, Yang ; Kou, Wei-Bin ; Chang, Tsung-Hui ; Wu, Yik-Chung</creator><creatorcontrib>Lin, Qingfeng ; Li, Yang ; Kou, Wei-Bin ; Chang, Tsung-Hui ; Wu, Yik-Chung</creatorcontrib><description>A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central processing unit (CPU) are connected by capacity-limited fronthauls and the signals at the APs need to be compressed/quantized before they are forwarded to the CPU. However, existing approaches treat the compression/quantization and activity detection as separate tasks, which makes it difficult to achieve global system optimality. To tackle the above problem, this paper proposes an augmented model-driven end-to-end learning framework which jointly optimizes the compression modules, quantization modules at the APs, and the decompression module and detection module at the CPU. Specifically, deep unfolding is leveraged for designing the detection module in order to inherit the domain knowledge derived from the optimization algorithm, and other modules are constructed by judiciously designed neural network architectures for improving the learning capability. Furthermore, we design an enhanced scheme so that the proposed framework is adaptable to different compression rates. We demonstrate numerically that the proposed framework significantly reduces the computational complexity and achieves better detection performance than the conventional approaches. Moreover, it costs a much smaller number of bits on the fronthauls while still maintaining the detection performance.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2024.3396798</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Activity detection ; Algorithms ; capacity-limited fronthauls ; cell-free massive MIMO ; Central Processing Unit ; Central processing units ; communication efficiency ; CPUs ; Design optimization ; end-to-end learning framework ; Machine learning ; massive machine-type communications (mMTC) ; Massive MIMO ; Modules ; Neural networks ; Quantization (signal) ; Task analysis ; Training ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.12888-12903</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-cba035df8ad451505d8918e12a07a4eff3a451930afdd6924b6af86dd6ec58493</cites><orcidid>0000-0001-9817-791X ; 0000-0002-2738-0387 ; 0000-0003-1349-2764 ; 0000-0003-0181-7437 ; 0000-0003-1112-057X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10529194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,782,786,798,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10529194$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lin, Qingfeng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Kou, Wei-Bin</creatorcontrib><creatorcontrib>Chang, Tsung-Hui</creatorcontrib><creatorcontrib>Wu, Yik-Chung</creatorcontrib><title>Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central processing unit (CPU) are connected by capacity-limited fronthauls and the signals at the APs need to be compressed/quantized before they are forwarded to the CPU. However, existing approaches treat the compression/quantization and activity detection as separate tasks, which makes it difficult to achieve global system optimality. To tackle the above problem, this paper proposes an augmented model-driven end-to-end learning framework which jointly optimizes the compression modules, quantization modules at the APs, and the decompression module and detection module at the CPU. Specifically, deep unfolding is leveraged for designing the detection module in order to inherit the domain knowledge derived from the optimization algorithm, and other modules are constructed by judiciously designed neural network architectures for improving the learning capability. Furthermore, we design an enhanced scheme so that the proposed framework is adaptable to different compression rates. We demonstrate numerically that the proposed framework significantly reduces the computational complexity and achieves better detection performance than the conventional approaches. Moreover, it costs a much smaller number of bits on the fronthauls while still maintaining the detection performance.</description><subject>Activity detection</subject><subject>Algorithms</subject><subject>capacity-limited fronthauls</subject><subject>cell-free massive MIMO</subject><subject>Central Processing Unit</subject><subject>Central processing units</subject><subject>communication efficiency</subject><subject>CPUs</subject><subject>Design optimization</subject><subject>end-to-end learning framework</subject><subject>Machine learning</subject><subject>massive machine-type communications (mMTC)</subject><subject>Massive MIMO</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Quantization (signal)</subject><subject>Task analysis</subject><subject>Training</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1PAjEQxTdGExG9e_DQxHOxH9vd1htZQEkgXDAeN2V3Sopsi90Fw8W_3RI4eHqTee_NJL8keaRkQClRL8vPYsAISwecqyxX8irpUSEkZiyV16eZZ5iyPLtN7tp2QwjNMyF6yW_hm2bvbKU76x0eG2MrC65Dw6qzB9sd0Qg6qE4mMj6gArZbPAkAaK7b1h6iTueLVzR0aLhfN7EJNZr7GrZ4FKLt0NjVuPM4CpqBDs66NZoE3cCPD1_3yY3R2xYeLtpPPibjZfGOZ4u3aTGc4YqlosPVShMuaiN1nQoqiKilohIo0yTXKRjDddwrTrSp60yxdJVpI7M4QyVkqng_eT7f3QX_vYe2Kzd-H1x8WXIaOeVUKhZT5Jyqgm_bAKbcBdvocCwpKU-Uy0i5PFEuL5Rj5elcsQDwLy6Yoirlf66eeTo</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Lin, Qingfeng</creator><creator>Li, Yang</creator><creator>Kou, Wei-Bin</creator><creator>Chang, Tsung-Hui</creator><creator>Wu, Yik-Chung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9817-791X</orcidid><orcidid>https://orcid.org/0000-0002-2738-0387</orcidid><orcidid>https://orcid.org/0000-0003-1349-2764</orcidid><orcidid>https://orcid.org/0000-0003-0181-7437</orcidid><orcidid>https://orcid.org/0000-0003-1112-057X</orcidid></search><sort><creationdate>20241001</creationdate><title>Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework</title><author>Lin, Qingfeng ; Li, Yang ; Kou, Wei-Bin ; Chang, Tsung-Hui ; Wu, Yik-Chung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-cba035df8ad451505d8918e12a07a4eff3a451930afdd6924b6af86dd6ec58493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activity detection</topic><topic>Algorithms</topic><topic>capacity-limited fronthauls</topic><topic>cell-free massive MIMO</topic><topic>Central Processing Unit</topic><topic>Central processing units</topic><topic>communication efficiency</topic><topic>CPUs</topic><topic>Design optimization</topic><topic>end-to-end learning framework</topic><topic>Machine learning</topic><topic>massive machine-type communications (mMTC)</topic><topic>Massive MIMO</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Quantization (signal)</topic><topic>Task analysis</topic><topic>Training</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Qingfeng</creatorcontrib><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Kou, Wei-Bin</creatorcontrib><creatorcontrib>Chang, Tsung-Hui</creatorcontrib><creatorcontrib>Wu, Yik-Chung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lin, Qingfeng</au><au>Li, Yang</au><au>Kou, Wei-Bin</au><au>Chang, Tsung-Hui</au><au>Wu, Yik-Chung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-10-01</date><risdate>2024</risdate><volume>23</volume><issue>10</issue><spage>12888</spage><epage>12903</epage><pages>12888-12903</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>A great amount of endeavour has recently been devoted to activity detection for cell-free massive multiple-input multiple-output (MIMO) systems, where multiple access points (APs) jointly identify the active devices from a large number of potential devices. In practice, the APs and the central processing unit (CPU) are connected by capacity-limited fronthauls and the signals at the APs need to be compressed/quantized before they are forwarded to the CPU. However, existing approaches treat the compression/quantization and activity detection as separate tasks, which makes it difficult to achieve global system optimality. To tackle the above problem, this paper proposes an augmented model-driven end-to-end learning framework which jointly optimizes the compression modules, quantization modules at the APs, and the decompression module and detection module at the CPU. Specifically, deep unfolding is leveraged for designing the detection module in order to inherit the domain knowledge derived from the optimization algorithm, and other modules are constructed by judiciously designed neural network architectures for improving the learning capability. Furthermore, we design an enhanced scheme so that the proposed framework is adaptable to different compression rates. We demonstrate numerically that the proposed framework significantly reduces the computational complexity and achieves better detection performance than the conventional approaches. Moreover, it costs a much smaller number of bits on the fronthauls while still maintaining the detection performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2024.3396798</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9817-791X</orcidid><orcidid>https://orcid.org/0000-0002-2738-0387</orcidid><orcidid>https://orcid.org/0000-0003-1349-2764</orcidid><orcidid>https://orcid.org/0000-0003-0181-7437</orcidid><orcidid>https://orcid.org/0000-0003-1112-057X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-10, Vol.23 (10), p.12888-12903
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2024_3396798
source IEEE Electronic Library (IEL)
subjects Activity detection
Algorithms
capacity-limited fronthauls
cell-free massive MIMO
Central Processing Unit
Central processing units
communication efficiency
CPUs
Design optimization
end-to-end learning framework
Machine learning
massive machine-type communications (mMTC)
Massive MIMO
Modules
Neural networks
Quantization (signal)
Task analysis
Training
Wireless communication
title Communication-Efficient Activity Detection for Cell-Free Massive MIMO: An Augmented Model-Driven End-to-End Learning Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T17%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication-Efficient%20Activity%20Detection%20for%20Cell-Free%20Massive%20MIMO:%20An%20Augmented%20Model-Driven%20End-to-End%20Learning%20Framework&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Lin,%20Qingfeng&rft.date=2024-10-01&rft.volume=23&rft.issue=10&rft.spage=12888&rft.epage=12903&rft.pages=12888-12903&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2024.3396798&rft_dat=%3Cproquest_RIE%3E3115571892%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115571892&rft_id=info:pmid/&rft_ieee_id=10529194&rfr_iscdi=true