Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications

Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2024-05, Vol.23 (5), p.4228-4242
Hauptverfasser: Ding, Rui, Zhou, Fuhui, Wu, Qihui, Dong, Chao, Han, Zhu, Dobre, Octavia A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4242
container_issue 5
container_start_page 4228
container_title IEEE transactions on wireless communications
container_volume 23
creator Ding, Rui
Zhou, Fuhui
Wu, Qihui
Dong, Chao
Han, Zhu
Dobre, Octavia A.
description Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL method relies on a large amount of labeled training samples and the classification accuracy is poor, especially in the low signal-to-noise ratio (SNR). In order to tackle this problem, two data-and-knowledge dual-driven AMC schemes are designed. A novel data and semantic knowledge driven AMC scheme is proposed by exploiting the semantic attribute information of different modulations. Moreover, a prior knowledge driven multi-task learning visual model is established to improve the classification performance in low SNR. Furthermore, another novel data and multi-domain knowledge joint driven AMC scheme is proposed by using the semantic attribute knowledge and the prior knowledge based multi-task learning visual model. Extensive simulation results demonstrate that our proposed data-and-knowledge dual-driven AMC schemes achieve the best performance compared with the benchmark schemes in terms of classification accuracy. Moreover, it is shown that the expert knowledge spawns for AMC accuracy improvement and a decrease in the required number of training samples.
doi_str_mv 10.1109/TWC.2023.3316197
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2023_3316197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10262257</ieee_id><sourcerecordid>3053298320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-35de18c55b1f4150191c4487fc76597f112709b65d21266534ebff1604da4b8d3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqWwMzBYYk7x2bETj1UKBVHEUtTRcmIbpUriYicg_j2p0oHp3une3T19CN0CWQAQ-bDdFQtKKFswBgJkdoZmwHmeUJrm50fNRAI0E5foKsY9IZAJzmdIr3Svse4Mfu38T2PNp8WrQTfJKtTftsPLofet7usKv3kzNKPyHS4aHWPt6mpqnQ9YrPGuDraxMeLCt-3QnabxGl043UR7c6pz9PH0uC2ek837-qVYbpKKStonjBsLecV5CS4FTkBClaZ55qoxqMwcjOGJLAU3FKgQnKW2dA4ESY1Oy9ywObqf7h6C_xps7NXeD6EbXypGOKMyZ5SMLjK5quBjDNapQ6hbHX4VEHUEqUaQ6ghSnUCOK3fTSm2t_WenglKesT9qXW5F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053298320</pqid></control><display><type>article</type><title>Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Ding, Rui ; Zhou, Fuhui ; Wu, Qihui ; Dong, Chao ; Han, Zhu ; Dobre, Octavia A.</creator><creatorcontrib>Ding, Rui ; Zhou, Fuhui ; Wu, Qihui ; Dong, Chao ; Han, Zhu ; Dobre, Octavia A.</creatorcontrib><description>Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL method relies on a large amount of labeled training samples and the classification accuracy is poor, especially in the low signal-to-noise ratio (SNR). In order to tackle this problem, two data-and-knowledge dual-driven AMC schemes are designed. A novel data and semantic knowledge driven AMC scheme is proposed by exploiting the semantic attribute information of different modulations. Moreover, a prior knowledge driven multi-task learning visual model is established to improve the classification performance in low SNR. Furthermore, another novel data and multi-domain knowledge joint driven AMC scheme is proposed by using the semantic attribute knowledge and the prior knowledge based multi-task learning visual model. Extensive simulation results demonstrate that our proposed data-and-knowledge dual-driven AMC schemes achieve the best performance compared with the benchmark schemes in terms of classification accuracy. Moreover, it is shown that the expert knowledge spawns for AMC accuracy improvement and a decrease in the required number of training samples.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3316197</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6G mobile communication ; Accuracy ; attribute knowledge ; Automatic modulation classification ; Classification ; Communication networks ; Computational modeling ; data-and-knowledge dual-driven ; Deep learning ; Feature extraction ; Knowledge ; low signal-to-noise ratio ; Modulation ; Semantics ; Signal to noise ratio ; Training ; Visual tasks ; Wireless communication ; Wireless communications ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2024-05, Vol.23 (5), p.4228-4242</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-35de18c55b1f4150191c4487fc76597f112709b65d21266534ebff1604da4b8d3</citedby><cites>FETCH-LOGICAL-c292t-35de18c55b1f4150191c4487fc76597f112709b65d21266534ebff1604da4b8d3</cites><orcidid>0000-0002-6606-5822 ; 0000-0002-9521-5084 ; 0000-0001-6880-6244 ; 0000-0001-8528-0512 ; 0000-0003-0460-316X ; 0000-0002-0183-0087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10262257$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10262257$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Rui</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Qihui</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><title>Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL method relies on a large amount of labeled training samples and the classification accuracy is poor, especially in the low signal-to-noise ratio (SNR). In order to tackle this problem, two data-and-knowledge dual-driven AMC schemes are designed. A novel data and semantic knowledge driven AMC scheme is proposed by exploiting the semantic attribute information of different modulations. Moreover, a prior knowledge driven multi-task learning visual model is established to improve the classification performance in low SNR. Furthermore, another novel data and multi-domain knowledge joint driven AMC scheme is proposed by using the semantic attribute knowledge and the prior knowledge based multi-task learning visual model. Extensive simulation results demonstrate that our proposed data-and-knowledge dual-driven AMC schemes achieve the best performance compared with the benchmark schemes in terms of classification accuracy. Moreover, it is shown that the expert knowledge spawns for AMC accuracy improvement and a decrease in the required number of training samples.</description><subject>6G mobile communication</subject><subject>Accuracy</subject><subject>attribute knowledge</subject><subject>Automatic modulation classification</subject><subject>Classification</subject><subject>Communication networks</subject><subject>Computational modeling</subject><subject>data-and-knowledge dual-driven</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Knowledge</subject><subject>low signal-to-noise ratio</subject><subject>Modulation</subject><subject>Semantics</subject><subject>Signal to noise ratio</subject><subject>Training</subject><subject>Visual tasks</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqWwMzBYYk7x2bETj1UKBVHEUtTRcmIbpUriYicg_j2p0oHp3une3T19CN0CWQAQ-bDdFQtKKFswBgJkdoZmwHmeUJrm50fNRAI0E5foKsY9IZAJzmdIr3Svse4Mfu38T2PNp8WrQTfJKtTftsPLofet7usKv3kzNKPyHS4aHWPt6mpqnQ9YrPGuDraxMeLCt-3QnabxGl043UR7c6pz9PH0uC2ek837-qVYbpKKStonjBsLecV5CS4FTkBClaZ55qoxqMwcjOGJLAU3FKgQnKW2dA4ESY1Oy9ywObqf7h6C_xps7NXeD6EbXypGOKMyZ5SMLjK5quBjDNapQ6hbHX4VEHUEqUaQ6ghSnUCOK3fTSm2t_WenglKesT9qXW5F</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Ding, Rui</creator><creator>Zhou, Fuhui</creator><creator>Wu, Qihui</creator><creator>Dong, Chao</creator><creator>Han, Zhu</creator><creator>Dobre, Octavia A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-9521-5084</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0003-0460-316X</orcidid><orcidid>https://orcid.org/0000-0002-0183-0087</orcidid></search><sort><creationdate>202405</creationdate><title>Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications</title><author>Ding, Rui ; Zhou, Fuhui ; Wu, Qihui ; Dong, Chao ; Han, Zhu ; Dobre, Octavia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-35de18c55b1f4150191c4487fc76597f112709b65d21266534ebff1604da4b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>6G mobile communication</topic><topic>Accuracy</topic><topic>attribute knowledge</topic><topic>Automatic modulation classification</topic><topic>Classification</topic><topic>Communication networks</topic><topic>Computational modeling</topic><topic>data-and-knowledge dual-driven</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Knowledge</topic><topic>low signal-to-noise ratio</topic><topic>Modulation</topic><topic>Semantics</topic><topic>Signal to noise ratio</topic><topic>Training</topic><topic>Visual tasks</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Rui</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Qihui</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Rui</au><au>Zhou, Fuhui</au><au>Wu, Qihui</au><au>Dong, Chao</au><au>Han, Zhu</au><au>Dobre, Octavia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-05</date><risdate>2024</risdate><volume>23</volume><issue>5</issue><spage>4228</spage><epage>4242</epage><pages>4228-4242</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL method relies on a large amount of labeled training samples and the classification accuracy is poor, especially in the low signal-to-noise ratio (SNR). In order to tackle this problem, two data-and-knowledge dual-driven AMC schemes are designed. A novel data and semantic knowledge driven AMC scheme is proposed by exploiting the semantic attribute information of different modulations. Moreover, a prior knowledge driven multi-task learning visual model is established to improve the classification performance in low SNR. Furthermore, another novel data and multi-domain knowledge joint driven AMC scheme is proposed by using the semantic attribute knowledge and the prior knowledge based multi-task learning visual model. Extensive simulation results demonstrate that our proposed data-and-knowledge dual-driven AMC schemes achieve the best performance compared with the benchmark schemes in terms of classification accuracy. Moreover, it is shown that the expert knowledge spawns for AMC accuracy improvement and a decrease in the required number of training samples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3316197</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-9521-5084</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0003-0460-316X</orcidid><orcidid>https://orcid.org/0000-0002-0183-0087</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2024-05, Vol.23 (5), p.4228-4242
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2023_3316197
source IEEE Electronic Library (IEL)
subjects 6G mobile communication
Accuracy
attribute knowledge
Automatic modulation classification
Classification
Communication networks
Computational modeling
data-and-knowledge dual-driven
Deep learning
Feature extraction
Knowledge
low signal-to-noise ratio
Modulation
Semantics
Signal to noise ratio
Training
Visual tasks
Wireless communication
Wireless communications
Wireless networks
title Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20and%20Knowledge%20Dual-Driven%20Automatic%20Modulation%20Classification%20for%206G%20Wireless%20Communications&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ding,%20Rui&rft.date=2024-05&rft.volume=23&rft.issue=5&rft.spage=4228&rft.epage=4242&rft.pages=4228-4242&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3316197&rft_dat=%3Cproquest_RIE%3E3053298320%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053298320&rft_id=info:pmid/&rft_ieee_id=10262257&rfr_iscdi=true