Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications
Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL me...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2024-05, Vol.23 (5), p.4228-4242 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4242 |
---|---|
container_issue | 5 |
container_start_page | 4228 |
container_title | IEEE transactions on wireless communications |
container_volume | 23 |
creator | Ding, Rui Zhou, Fuhui Wu, Qihui Dong, Chao Han, Zhu Dobre, Octavia A. |
description | Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL method relies on a large amount of labeled training samples and the classification accuracy is poor, especially in the low signal-to-noise ratio (SNR). In order to tackle this problem, two data-and-knowledge dual-driven AMC schemes are designed. A novel data and semantic knowledge driven AMC scheme is proposed by exploiting the semantic attribute information of different modulations. Moreover, a prior knowledge driven multi-task learning visual model is established to improve the classification performance in low SNR. Furthermore, another novel data and multi-domain knowledge joint driven AMC scheme is proposed by using the semantic attribute knowledge and the prior knowledge based multi-task learning visual model. Extensive simulation results demonstrate that our proposed data-and-knowledge dual-driven AMC schemes achieve the best performance compared with the benchmark schemes in terms of classification accuracy. Moreover, it is shown that the expert knowledge spawns for AMC accuracy improvement and a decrease in the required number of training samples. |
doi_str_mv | 10.1109/TWC.2023.3316197 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2023_3316197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10262257</ieee_id><sourcerecordid>3053298320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-35de18c55b1f4150191c4487fc76597f112709b65d21266534ebff1604da4b8d3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQhS0EEqWwMzBYYk7x2bETj1UKBVHEUtTRcmIbpUriYicg_j2p0oHp3une3T19CN0CWQAQ-bDdFQtKKFswBgJkdoZmwHmeUJrm50fNRAI0E5foKsY9IZAJzmdIr3Svse4Mfu38T2PNp8WrQTfJKtTftsPLofet7usKv3kzNKPyHS4aHWPt6mpqnQ9YrPGuDraxMeLCt-3QnabxGl043UR7c6pz9PH0uC2ek837-qVYbpKKStonjBsLecV5CS4FTkBClaZ55qoxqMwcjOGJLAU3FKgQnKW2dA4ESY1Oy9ywObqf7h6C_xps7NXeD6EbXypGOKMyZ5SMLjK5quBjDNapQ6hbHX4VEHUEqUaQ6ghSnUCOK3fTSm2t_WenglKesT9qXW5F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3053298320</pqid></control><display><type>article</type><title>Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications</title><source>IEEE Electronic Library (IEL)</source><creator>Ding, Rui ; Zhou, Fuhui ; Wu, Qihui ; Dong, Chao ; Han, Zhu ; Dobre, Octavia A.</creator><creatorcontrib>Ding, Rui ; Zhou, Fuhui ; Wu, Qihui ; Dong, Chao ; Han, Zhu ; Dobre, Octavia A.</creatorcontrib><description>Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL method relies on a large amount of labeled training samples and the classification accuracy is poor, especially in the low signal-to-noise ratio (SNR). In order to tackle this problem, two data-and-knowledge dual-driven AMC schemes are designed. A novel data and semantic knowledge driven AMC scheme is proposed by exploiting the semantic attribute information of different modulations. Moreover, a prior knowledge driven multi-task learning visual model is established to improve the classification performance in low SNR. Furthermore, another novel data and multi-domain knowledge joint driven AMC scheme is proposed by using the semantic attribute knowledge and the prior knowledge based multi-task learning visual model. Extensive simulation results demonstrate that our proposed data-and-knowledge dual-driven AMC schemes achieve the best performance compared with the benchmark schemes in terms of classification accuracy. Moreover, it is shown that the expert knowledge spawns for AMC accuracy improvement and a decrease in the required number of training samples.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2023.3316197</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6G mobile communication ; Accuracy ; attribute knowledge ; Automatic modulation classification ; Classification ; Communication networks ; Computational modeling ; data-and-knowledge dual-driven ; Deep learning ; Feature extraction ; Knowledge ; low signal-to-noise ratio ; Modulation ; Semantics ; Signal to noise ratio ; Training ; Visual tasks ; Wireless communication ; Wireless communications ; Wireless networks</subject><ispartof>IEEE transactions on wireless communications, 2024-05, Vol.23 (5), p.4228-4242</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-35de18c55b1f4150191c4487fc76597f112709b65d21266534ebff1604da4b8d3</citedby><cites>FETCH-LOGICAL-c292t-35de18c55b1f4150191c4487fc76597f112709b65d21266534ebff1604da4b8d3</cites><orcidid>0000-0002-6606-5822 ; 0000-0002-9521-5084 ; 0000-0001-6880-6244 ; 0000-0001-8528-0512 ; 0000-0003-0460-316X ; 0000-0002-0183-0087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10262257$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10262257$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ding, Rui</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Qihui</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><title>Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL method relies on a large amount of labeled training samples and the classification accuracy is poor, especially in the low signal-to-noise ratio (SNR). In order to tackle this problem, two data-and-knowledge dual-driven AMC schemes are designed. A novel data and semantic knowledge driven AMC scheme is proposed by exploiting the semantic attribute information of different modulations. Moreover, a prior knowledge driven multi-task learning visual model is established to improve the classification performance in low SNR. Furthermore, another novel data and multi-domain knowledge joint driven AMC scheme is proposed by using the semantic attribute knowledge and the prior knowledge based multi-task learning visual model. Extensive simulation results demonstrate that our proposed data-and-knowledge dual-driven AMC schemes achieve the best performance compared with the benchmark schemes in terms of classification accuracy. Moreover, it is shown that the expert knowledge spawns for AMC accuracy improvement and a decrease in the required number of training samples.</description><subject>6G mobile communication</subject><subject>Accuracy</subject><subject>attribute knowledge</subject><subject>Automatic modulation classification</subject><subject>Classification</subject><subject>Communication networks</subject><subject>Computational modeling</subject><subject>data-and-knowledge dual-driven</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Knowledge</subject><subject>low signal-to-noise ratio</subject><subject>Modulation</subject><subject>Semantics</subject><subject>Signal to noise ratio</subject><subject>Training</subject><subject>Visual tasks</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQhS0EEqWwMzBYYk7x2bETj1UKBVHEUtTRcmIbpUriYicg_j2p0oHp3une3T19CN0CWQAQ-bDdFQtKKFswBgJkdoZmwHmeUJrm50fNRAI0E5foKsY9IZAJzmdIr3Svse4Mfu38T2PNp8WrQTfJKtTftsPLofet7usKv3kzNKPyHS4aHWPt6mpqnQ9YrPGuDraxMeLCt-3QnabxGl043UR7c6pz9PH0uC2ek837-qVYbpKKStonjBsLecV5CS4FTkBClaZ55qoxqMwcjOGJLAU3FKgQnKW2dA4ESY1Oy9ywObqf7h6C_xps7NXeD6EbXypGOKMyZ5SMLjK5quBjDNapQ6hbHX4VEHUEqUaQ6ghSnUCOK3fTSm2t_WenglKesT9qXW5F</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Ding, Rui</creator><creator>Zhou, Fuhui</creator><creator>Wu, Qihui</creator><creator>Dong, Chao</creator><creator>Han, Zhu</creator><creator>Dobre, Octavia A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-9521-5084</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0003-0460-316X</orcidid><orcidid>https://orcid.org/0000-0002-0183-0087</orcidid></search><sort><creationdate>202405</creationdate><title>Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications</title><author>Ding, Rui ; Zhou, Fuhui ; Wu, Qihui ; Dong, Chao ; Han, Zhu ; Dobre, Octavia A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-35de18c55b1f4150191c4487fc76597f112709b65d21266534ebff1604da4b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>6G mobile communication</topic><topic>Accuracy</topic><topic>attribute knowledge</topic><topic>Automatic modulation classification</topic><topic>Classification</topic><topic>Communication networks</topic><topic>Computational modeling</topic><topic>data-and-knowledge dual-driven</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Knowledge</topic><topic>low signal-to-noise ratio</topic><topic>Modulation</topic><topic>Semantics</topic><topic>Signal to noise ratio</topic><topic>Training</topic><topic>Visual tasks</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Rui</creatorcontrib><creatorcontrib>Zhou, Fuhui</creatorcontrib><creatorcontrib>Wu, Qihui</creatorcontrib><creatorcontrib>Dong, Chao</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><creatorcontrib>Dobre, Octavia A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ding, Rui</au><au>Zhou, Fuhui</au><au>Wu, Qihui</au><au>Dong, Chao</au><au>Han, Zhu</au><au>Dobre, Octavia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2024-05</date><risdate>2024</risdate><volume>23</volume><issue>5</issue><spage>4228</spage><epage>4242</epage><pages>4228-4242</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Automatic modulation classification (AMC) is of crucial importance in the sixth generation wireless communication networks. Deep learning (DL)-based AMC schemes have attracted extensive attention due to their superior accuracy compared with the conventional methods. However, a pure data-driven DL method relies on a large amount of labeled training samples and the classification accuracy is poor, especially in the low signal-to-noise ratio (SNR). In order to tackle this problem, two data-and-knowledge dual-driven AMC schemes are designed. A novel data and semantic knowledge driven AMC scheme is proposed by exploiting the semantic attribute information of different modulations. Moreover, a prior knowledge driven multi-task learning visual model is established to improve the classification performance in low SNR. Furthermore, another novel data and multi-domain knowledge joint driven AMC scheme is proposed by using the semantic attribute knowledge and the prior knowledge based multi-task learning visual model. Extensive simulation results demonstrate that our proposed data-and-knowledge dual-driven AMC schemes achieve the best performance compared with the benchmark schemes in terms of classification accuracy. Moreover, it is shown that the expert knowledge spawns for AMC accuracy improvement and a decrease in the required number of training samples.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2023.3316197</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-9521-5084</orcidid><orcidid>https://orcid.org/0000-0001-6880-6244</orcidid><orcidid>https://orcid.org/0000-0001-8528-0512</orcidid><orcidid>https://orcid.org/0000-0003-0460-316X</orcidid><orcidid>https://orcid.org/0000-0002-0183-0087</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2024-05, Vol.23 (5), p.4228-4242 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2023_3316197 |
source | IEEE Electronic Library (IEL) |
subjects | 6G mobile communication Accuracy attribute knowledge Automatic modulation classification Classification Communication networks Computational modeling data-and-knowledge dual-driven Deep learning Feature extraction Knowledge low signal-to-noise ratio Modulation Semantics Signal to noise ratio Training Visual tasks Wireless communication Wireless communications Wireless networks |
title | Data and Knowledge Dual-Driven Automatic Modulation Classification for 6G Wireless Communications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20and%20Knowledge%20Dual-Driven%20Automatic%20Modulation%20Classification%20for%206G%20Wireless%20Communications&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Ding,%20Rui&rft.date=2024-05&rft.volume=23&rft.issue=5&rft.spage=4228&rft.epage=4242&rft.pages=4228-4242&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2023.3316197&rft_dat=%3Cproquest_RIE%3E3053298320%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3053298320&rft_id=info:pmid/&rft_ieee_id=10262257&rfr_iscdi=true |