IRS-Assisted MISO System With Phase Noise: Channel Estimation and Power Scaling Laws

Recent studies have shown that intelligent reflecting surfaces (IRS) can significantly improve the spectral and energy efficiency of wireless communication links. However, most works assume perfect transceivers and IRS, which is impractical in real communication systems. In this work, we study the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2023-06, Vol.22 (6), p.3927-3941
Hauptverfasser: Li, Chu, van Delden, Marcel, Sezgin, Aydin, Musch, Thomas, Han, Zhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3941
container_issue 6
container_start_page 3927
container_title IEEE transactions on wireless communications
container_volume 22
creator Li, Chu
van Delden, Marcel
Sezgin, Aydin
Musch, Thomas
Han, Zhu
description Recent studies have shown that intelligent reflecting surfaces (IRS) can significantly improve the spectral and energy efficiency of wireless communication links. However, most works assume perfect transceivers and IRS, which is impractical in real communication systems. In this work, we study the effect of the hardware impairments in IRS-assisted MISO systems with single user, where we consider both phase noise caused by the imperfect transceivers and IRS. To this end, we propose a linear minimum mean square error (LMMSE) channel estimation algorithm that takes the phase noise into account. Furthermore, we study the impact of phase noise on the downlink performance of an IRS-assisted system. Both analytical and numerical results are presented, where we prove that the transceiver phase noise can be compensated with the optimized IRS, while the IRS phase noise remains but is not exacerbated. As the number of reflective elements N approaches infinity, the IRS phase noise results in a constant loss in terms of the ergodic rate. Moreover, we find that the phase noise has no impact on the scaling laws. If the direct channel is blocked and as N \rightarrow \infty , the transmit power can be scaled down by \frac {1}{N} and \frac {1}{N^{2}} , respectively, for random and optimized IRS, without compromising the received signal to noise ratio (SNR).
doi_str_mv 10.1109/TWC.2022.3222539
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2022_3222539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9961236</ieee_id><sourcerecordid>2824111733</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ec8a0f44cb4a8c252e856ea2958f3cd90b73c277439f8f7d3e0d14354488a2133</originalsourceid><addsrcrecordid>eNo9kMFPwjAUhxujiYjeTbw08TxsX9ut80YWUBIU4jAcm9K9yQhsuI4Q_nu3QDy93-H7vffyEfLI2YBzFr8slskAGMBAAIAS8RXpcaV0ACD1dZdFGHCIwlty5_2GMR6FSvXIYvKVBkPvC99gRj8m6Yympzbv6LJo1nS-th7pZ1V4fKXJ2pYlbunIN8XONkVVUltmdF4dsaaps9ui_KFTe_T35Ca3W48Pl9kn3-PRInkPprO3STKcBg6kbAJ02rJcSreSVjtQgFqFaCFWOhcui9kqEg6iSIo413mUCWQZl0JJqbUFLkSfPJ_37uvq94C-MZvqUJftSQMaJOc8Eh3FzpSrK-9rzM2-bv-vT4Yz07kzrTvTuTMXd23l6VwpEPEfj-OQgwjFH2K8aFY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2824111733</pqid></control><display><type>article</type><title>IRS-Assisted MISO System With Phase Noise: Channel Estimation and Power Scaling Laws</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Chu ; van Delden, Marcel ; Sezgin, Aydin ; Musch, Thomas ; Han, Zhu</creator><creatorcontrib>Li, Chu ; van Delden, Marcel ; Sezgin, Aydin ; Musch, Thomas ; Han, Zhu</creatorcontrib><description><![CDATA[Recent studies have shown that intelligent reflecting surfaces (IRS) can significantly improve the spectral and energy efficiency of wireless communication links. However, most works assume perfect transceivers and IRS, which is impractical in real communication systems. In this work, we study the effect of the hardware impairments in IRS-assisted MISO systems with single user, where we consider both phase noise caused by the imperfect transceivers and IRS. To this end, we propose a linear minimum mean square error (LMMSE) channel estimation algorithm that takes the phase noise into account. Furthermore, we study the impact of phase noise on the downlink performance of an IRS-assisted system. Both analytical and numerical results are presented, where we prove that the transceiver phase noise can be compensated with the optimized IRS, while the IRS phase noise remains but is not exacerbated. As the number of reflective elements <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> approaches infinity, the IRS phase noise results in a constant loss in terms of the ergodic rate. Moreover, we find that the phase noise has no impact on the scaling laws. If the direct channel is blocked and as <inline-formula> <tex-math notation="LaTeX">N \rightarrow \infty </tex-math></inline-formula>, the transmit power can be scaled down by <inline-formula> <tex-math notation="LaTeX">\frac {1}{N} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\frac {1}{N^{2}} </tex-math></inline-formula>, respectively, for random and optimized IRS, without compromising the received signal to noise ratio (SNR).]]></description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3222539</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Channel estimation ; Communications systems ; Hardware ; Intelligent reflecting surfaces (IRS) ; LMMSE ; Local oscillators ; Phase noise ; Radio frequency ; Scaling laws ; Signal to noise ratio ; Transceivers ; Uplink ; Wireless communication ; Wireless communications</subject><ispartof>IEEE transactions on wireless communications, 2023-06, Vol.22 (6), p.3927-3941</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-ec8a0f44cb4a8c252e856ea2958f3cd90b73c277439f8f7d3e0d14354488a2133</cites><orcidid>0000-0001-9349-2312 ; 0000-0002-6606-5822 ; 0000-0002-3924-0883 ; 0000-0003-1808-3644 ; 0000-0003-3511-2662</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9961236$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9961236$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Chu</creatorcontrib><creatorcontrib>van Delden, Marcel</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><creatorcontrib>Musch, Thomas</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><title>IRS-Assisted MISO System With Phase Noise: Channel Estimation and Power Scaling Laws</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description><![CDATA[Recent studies have shown that intelligent reflecting surfaces (IRS) can significantly improve the spectral and energy efficiency of wireless communication links. However, most works assume perfect transceivers and IRS, which is impractical in real communication systems. In this work, we study the effect of the hardware impairments in IRS-assisted MISO systems with single user, where we consider both phase noise caused by the imperfect transceivers and IRS. To this end, we propose a linear minimum mean square error (LMMSE) channel estimation algorithm that takes the phase noise into account. Furthermore, we study the impact of phase noise on the downlink performance of an IRS-assisted system. Both analytical and numerical results are presented, where we prove that the transceiver phase noise can be compensated with the optimized IRS, while the IRS phase noise remains but is not exacerbated. As the number of reflective elements <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> approaches infinity, the IRS phase noise results in a constant loss in terms of the ergodic rate. Moreover, we find that the phase noise has no impact on the scaling laws. If the direct channel is blocked and as <inline-formula> <tex-math notation="LaTeX">N \rightarrow \infty </tex-math></inline-formula>, the transmit power can be scaled down by <inline-formula> <tex-math notation="LaTeX">\frac {1}{N} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\frac {1}{N^{2}} </tex-math></inline-formula>, respectively, for random and optimized IRS, without compromising the received signal to noise ratio (SNR).]]></description><subject>Algorithms</subject><subject>Channel estimation</subject><subject>Communications systems</subject><subject>Hardware</subject><subject>Intelligent reflecting surfaces (IRS)</subject><subject>LMMSE</subject><subject>Local oscillators</subject><subject>Phase noise</subject><subject>Radio frequency</subject><subject>Scaling laws</subject><subject>Signal to noise ratio</subject><subject>Transceivers</subject><subject>Uplink</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFPwjAUhxujiYjeTbw08TxsX9ut80YWUBIU4jAcm9K9yQhsuI4Q_nu3QDy93-H7vffyEfLI2YBzFr8slskAGMBAAIAS8RXpcaV0ACD1dZdFGHCIwlty5_2GMR6FSvXIYvKVBkPvC99gRj8m6Yympzbv6LJo1nS-th7pZ1V4fKXJ2pYlbunIN8XONkVVUltmdF4dsaaps9ui_KFTe_T35Ca3W48Pl9kn3-PRInkPprO3STKcBg6kbAJ02rJcSreSVjtQgFqFaCFWOhcui9kqEg6iSIo413mUCWQZl0JJqbUFLkSfPJ_37uvq94C-MZvqUJftSQMaJOc8Eh3FzpSrK-9rzM2-bv-vT4Yz07kzrTvTuTMXd23l6VwpEPEfj-OQgwjFH2K8aFY</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Li, Chu</creator><creator>van Delden, Marcel</creator><creator>Sezgin, Aydin</creator><creator>Musch, Thomas</creator><creator>Han, Zhu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9349-2312</orcidid><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-3924-0883</orcidid><orcidid>https://orcid.org/0000-0003-1808-3644</orcidid><orcidid>https://orcid.org/0000-0003-3511-2662</orcidid></search><sort><creationdate>202306</creationdate><title>IRS-Assisted MISO System With Phase Noise: Channel Estimation and Power Scaling Laws</title><author>Li, Chu ; van Delden, Marcel ; Sezgin, Aydin ; Musch, Thomas ; Han, Zhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ec8a0f44cb4a8c252e856ea2958f3cd90b73c277439f8f7d3e0d14354488a2133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Channel estimation</topic><topic>Communications systems</topic><topic>Hardware</topic><topic>Intelligent reflecting surfaces (IRS)</topic><topic>LMMSE</topic><topic>Local oscillators</topic><topic>Phase noise</topic><topic>Radio frequency</topic><topic>Scaling laws</topic><topic>Signal to noise ratio</topic><topic>Transceivers</topic><topic>Uplink</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chu</creatorcontrib><creatorcontrib>van Delden, Marcel</creatorcontrib><creatorcontrib>Sezgin, Aydin</creatorcontrib><creatorcontrib>Musch, Thomas</creatorcontrib><creatorcontrib>Han, Zhu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Chu</au><au>van Delden, Marcel</au><au>Sezgin, Aydin</au><au>Musch, Thomas</au><au>Han, Zhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IRS-Assisted MISO System With Phase Noise: Channel Estimation and Power Scaling Laws</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2023-06</date><risdate>2023</risdate><volume>22</volume><issue>6</issue><spage>3927</spage><epage>3941</epage><pages>3927-3941</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract><![CDATA[Recent studies have shown that intelligent reflecting surfaces (IRS) can significantly improve the spectral and energy efficiency of wireless communication links. However, most works assume perfect transceivers and IRS, which is impractical in real communication systems. In this work, we study the effect of the hardware impairments in IRS-assisted MISO systems with single user, where we consider both phase noise caused by the imperfect transceivers and IRS. To this end, we propose a linear minimum mean square error (LMMSE) channel estimation algorithm that takes the phase noise into account. Furthermore, we study the impact of phase noise on the downlink performance of an IRS-assisted system. Both analytical and numerical results are presented, where we prove that the transceiver phase noise can be compensated with the optimized IRS, while the IRS phase noise remains but is not exacerbated. As the number of reflective elements <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> approaches infinity, the IRS phase noise results in a constant loss in terms of the ergodic rate. Moreover, we find that the phase noise has no impact on the scaling laws. If the direct channel is blocked and as <inline-formula> <tex-math notation="LaTeX">N \rightarrow \infty </tex-math></inline-formula>, the transmit power can be scaled down by <inline-formula> <tex-math notation="LaTeX">\frac {1}{N} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">\frac {1}{N^{2}} </tex-math></inline-formula>, respectively, for random and optimized IRS, without compromising the received signal to noise ratio (SNR).]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3222539</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9349-2312</orcidid><orcidid>https://orcid.org/0000-0002-6606-5822</orcidid><orcidid>https://orcid.org/0000-0002-3924-0883</orcidid><orcidid>https://orcid.org/0000-0003-1808-3644</orcidid><orcidid>https://orcid.org/0000-0003-3511-2662</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2023-06, Vol.22 (6), p.3927-3941
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2022_3222539
source IEEE Electronic Library (IEL)
subjects Algorithms
Channel estimation
Communications systems
Hardware
Intelligent reflecting surfaces (IRS)
LMMSE
Local oscillators
Phase noise
Radio frequency
Scaling laws
Signal to noise ratio
Transceivers
Uplink
Wireless communication
Wireless communications
title IRS-Assisted MISO System With Phase Noise: Channel Estimation and Power Scaling Laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IRS-Assisted%20MISO%20System%20With%20Phase%20Noise:%20Channel%20Estimation%20and%20Power%20Scaling%20Laws&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Li,%20Chu&rft.date=2023-06&rft.volume=22&rft.issue=6&rft.spage=3927&rft.epage=3941&rft.pages=3927-3941&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3222539&rft_dat=%3Cproquest_RIE%3E2824111733%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2824111733&rft_id=info:pmid/&rft_ieee_id=9961236&rfr_iscdi=true