A Multi-Dimensional Matrix Pencil-Based Channel Prediction Method for Massive MIMO With Mobility
This paper addresses the mobility problem in massive multiple-input multiple-output systems, which leads to significant performance losses in the practical deployment of the fifth generation mobile communication networks. We propose a novel channel prediction method based on multi-dimensional matrix...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2023-04, Vol.22 (4), p.2215-2230 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2230 |
---|---|
container_issue | 4 |
container_start_page | 2215 |
container_title | IEEE transactions on wireless communications |
container_volume | 22 |
creator | Li, Weidong Yin, Haifan Qin, Ziao Cao, Yandi Debbah, Merouane |
description | This paper addresses the mobility problem in massive multiple-input multiple-output systems, which leads to significant performance losses in the practical deployment of the fifth generation mobile communication networks. We propose a novel channel prediction method based on multi-dimensional matrix pencil (MDMP), which estimates the path parameters by exploiting the angular-frequency-domain and angular-time-domain structures of the wideband channel. The MDMP method also entails a novel path pairing scheme to pair the delay and Doppler, based on the super-resolution property of the angle estimation. Our method is able to deal with the realistic constraint of time-varying path delays introduced by user movements, which has not been considered so far in the literature. We prove theoretically that in the scenario with time-varying path delays, the prediction error converges to zero with the increasing number of the base station (BS) antennas, providing that only two arbitrary channel samples are known. We also derive a lower-bound of the number of the BS antennas to achieve a satisfactory performance. Simulation results under the industrial channel model of 3GPP demonstrate that our proposed MDMP method approaches the performance of the stationary scenario even when the users' velocity reaches 120 km/h and the latency of the channel state information is as large as 16 ms. |
doi_str_mv | 10.1109/TWC.2022.3210290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2022_3210290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9912343</ieee_id><sourcerecordid>2799845551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-34400c36e49aede47c6ac51da93c47e4d5d9ca3c1ff9694a3739bc71263548283</originalsourceid><addsrcrecordid>eNo9kE1PwkAQQDdGExG9m3jZxHNxP9vuEesXCQ0cMBzXZTsNS0qLu4uRf28JxNPM4b1J5iF0T8mIUqKeFstixAhjI84oYYpcoAGVMk8YE_nlcedpQlmWXqObEDaE0CyVcoC-xrjcN9ElL24LbXBdaxpcmujdL55Da12TPJsAFS7Wpm2hwXMPlbOxB3EJcd1VuO58b4TgfgCXk3KGly6ucdmtXOPi4RZd1aYJcHeeQ_T59rooPpLp7H1SjKeJ5ZzHhAtBiOUpCGWgApHZ1FhJK6O4FRmISlbKGm5pXatUCcMzrlY2oyzlUuQs50P0eLq78933HkLUm27v-2-CZplSuZBS0p4iJ8r6LgQPtd55tzX-oCnRx46676iPHfW5Y688nBQHAP-4UpRxwfkf_ARtbg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2799845551</pqid></control><display><type>article</type><title>A Multi-Dimensional Matrix Pencil-Based Channel Prediction Method for Massive MIMO With Mobility</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Weidong ; Yin, Haifan ; Qin, Ziao ; Cao, Yandi ; Debbah, Merouane</creator><creatorcontrib>Li, Weidong ; Yin, Haifan ; Qin, Ziao ; Cao, Yandi ; Debbah, Merouane</creatorcontrib><description>This paper addresses the mobility problem in massive multiple-input multiple-output systems, which leads to significant performance losses in the practical deployment of the fifth generation mobile communication networks. We propose a novel channel prediction method based on multi-dimensional matrix pencil (MDMP), which estimates the path parameters by exploiting the angular-frequency-domain and angular-time-domain structures of the wideband channel. The MDMP method also entails a novel path pairing scheme to pair the delay and Doppler, based on the super-resolution property of the angle estimation. Our method is able to deal with the realistic constraint of time-varying path delays introduced by user movements, which has not been considered so far in the literature. We prove theoretically that in the scenario with time-varying path delays, the prediction error converges to zero with the increasing number of the base station (BS) antennas, providing that only two arbitrary channel samples are known. We also derive a lower-bound of the number of the BS antennas to achieve a satisfactory performance. Simulation results under the industrial channel model of 3GPP demonstrate that our proposed MDMP method approaches the performance of the stationary scenario even when the users' velocity reaches 120 km/h and the latency of the channel state information is as large as 16 ms.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3210290</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Antennas ; Channel estimation ; channel prediction ; channel structure ; Communication networks ; CSI delay ; Delays ; Doppler effect ; Lower bounds ; Massive MIMO ; matrix pencil ; MDMP prediction method ; mobility ; Prediction algorithms ; Prediction methods</subject><ispartof>IEEE transactions on wireless communications, 2023-04, Vol.22 (4), p.2215-2230</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-34400c36e49aede47c6ac51da93c47e4d5d9ca3c1ff9694a3739bc71263548283</citedby><cites>FETCH-LOGICAL-c333t-34400c36e49aede47c6ac51da93c47e4d5d9ca3c1ff9694a3739bc71263548283</cites><orcidid>0000-0001-9184-4599 ; 0000-0001-9713-0263 ; 0000-0003-4497-3448 ; 0000-0002-5624-8764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9912343$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9912343$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Weidong</creatorcontrib><creatorcontrib>Yin, Haifan</creatorcontrib><creatorcontrib>Qin, Ziao</creatorcontrib><creatorcontrib>Cao, Yandi</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><title>A Multi-Dimensional Matrix Pencil-Based Channel Prediction Method for Massive MIMO With Mobility</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This paper addresses the mobility problem in massive multiple-input multiple-output systems, which leads to significant performance losses in the practical deployment of the fifth generation mobile communication networks. We propose a novel channel prediction method based on multi-dimensional matrix pencil (MDMP), which estimates the path parameters by exploiting the angular-frequency-domain and angular-time-domain structures of the wideband channel. The MDMP method also entails a novel path pairing scheme to pair the delay and Doppler, based on the super-resolution property of the angle estimation. Our method is able to deal with the realistic constraint of time-varying path delays introduced by user movements, which has not been considered so far in the literature. We prove theoretically that in the scenario with time-varying path delays, the prediction error converges to zero with the increasing number of the base station (BS) antennas, providing that only two arbitrary channel samples are known. We also derive a lower-bound of the number of the BS antennas to achieve a satisfactory performance. Simulation results under the industrial channel model of 3GPP demonstrate that our proposed MDMP method approaches the performance of the stationary scenario even when the users' velocity reaches 120 km/h and the latency of the channel state information is as large as 16 ms.</description><subject>5G mobile communication</subject><subject>Antennas</subject><subject>Channel estimation</subject><subject>channel prediction</subject><subject>channel structure</subject><subject>Communication networks</subject><subject>CSI delay</subject><subject>Delays</subject><subject>Doppler effect</subject><subject>Lower bounds</subject><subject>Massive MIMO</subject><subject>matrix pencil</subject><subject>MDMP prediction method</subject><subject>mobility</subject><subject>Prediction algorithms</subject><subject>Prediction methods</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQQDdGExG9m3jZxHNxP9vuEesXCQ0cMBzXZTsNS0qLu4uRf28JxNPM4b1J5iF0T8mIUqKeFstixAhjI84oYYpcoAGVMk8YE_nlcedpQlmWXqObEDaE0CyVcoC-xrjcN9ElL24LbXBdaxpcmujdL55Da12TPJsAFS7Wpm2hwXMPlbOxB3EJcd1VuO58b4TgfgCXk3KGly6ucdmtXOPi4RZd1aYJcHeeQ_T59rooPpLp7H1SjKeJ5ZzHhAtBiOUpCGWgApHZ1FhJK6O4FRmISlbKGm5pXatUCcMzrlY2oyzlUuQs50P0eLq78933HkLUm27v-2-CZplSuZBS0p4iJ8r6LgQPtd55tzX-oCnRx46676iPHfW5Y688nBQHAP-4UpRxwfkf_ARtbg</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Li, Weidong</creator><creator>Yin, Haifan</creator><creator>Qin, Ziao</creator><creator>Cao, Yandi</creator><creator>Debbah, Merouane</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9184-4599</orcidid><orcidid>https://orcid.org/0000-0001-9713-0263</orcidid><orcidid>https://orcid.org/0000-0003-4497-3448</orcidid><orcidid>https://orcid.org/0000-0002-5624-8764</orcidid></search><sort><creationdate>202304</creationdate><title>A Multi-Dimensional Matrix Pencil-Based Channel Prediction Method for Massive MIMO With Mobility</title><author>Li, Weidong ; Yin, Haifan ; Qin, Ziao ; Cao, Yandi ; Debbah, Merouane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-34400c36e49aede47c6ac51da93c47e4d5d9ca3c1ff9694a3739bc71263548283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>5G mobile communication</topic><topic>Antennas</topic><topic>Channel estimation</topic><topic>channel prediction</topic><topic>channel structure</topic><topic>Communication networks</topic><topic>CSI delay</topic><topic>Delays</topic><topic>Doppler effect</topic><topic>Lower bounds</topic><topic>Massive MIMO</topic><topic>matrix pencil</topic><topic>MDMP prediction method</topic><topic>mobility</topic><topic>Prediction algorithms</topic><topic>Prediction methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Weidong</creatorcontrib><creatorcontrib>Yin, Haifan</creatorcontrib><creatorcontrib>Qin, Ziao</creatorcontrib><creatorcontrib>Cao, Yandi</creatorcontrib><creatorcontrib>Debbah, Merouane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Weidong</au><au>Yin, Haifan</au><au>Qin, Ziao</au><au>Cao, Yandi</au><au>Debbah, Merouane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-Dimensional Matrix Pencil-Based Channel Prediction Method for Massive MIMO With Mobility</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2023-04</date><risdate>2023</risdate><volume>22</volume><issue>4</issue><spage>2215</spage><epage>2230</epage><pages>2215-2230</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This paper addresses the mobility problem in massive multiple-input multiple-output systems, which leads to significant performance losses in the practical deployment of the fifth generation mobile communication networks. We propose a novel channel prediction method based on multi-dimensional matrix pencil (MDMP), which estimates the path parameters by exploiting the angular-frequency-domain and angular-time-domain structures of the wideband channel. The MDMP method also entails a novel path pairing scheme to pair the delay and Doppler, based on the super-resolution property of the angle estimation. Our method is able to deal with the realistic constraint of time-varying path delays introduced by user movements, which has not been considered so far in the literature. We prove theoretically that in the scenario with time-varying path delays, the prediction error converges to zero with the increasing number of the base station (BS) antennas, providing that only two arbitrary channel samples are known. We also derive a lower-bound of the number of the BS antennas to achieve a satisfactory performance. Simulation results under the industrial channel model of 3GPP demonstrate that our proposed MDMP method approaches the performance of the stationary scenario even when the users' velocity reaches 120 km/h and the latency of the channel state information is as large as 16 ms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3210290</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9184-4599</orcidid><orcidid>https://orcid.org/0000-0001-9713-0263</orcidid><orcidid>https://orcid.org/0000-0003-4497-3448</orcidid><orcidid>https://orcid.org/0000-0002-5624-8764</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2023-04, Vol.22 (4), p.2215-2230 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2022_3210290 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication Antennas Channel estimation channel prediction channel structure Communication networks CSI delay Delays Doppler effect Lower bounds Massive MIMO matrix pencil MDMP prediction method mobility Prediction algorithms Prediction methods |
title | A Multi-Dimensional Matrix Pencil-Based Channel Prediction Method for Massive MIMO With Mobility |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-Dimensional%20Matrix%20Pencil-Based%20Channel%20Prediction%20Method%20for%20Massive%20MIMO%20With%20Mobility&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Li,%20Weidong&rft.date=2023-04&rft.volume=22&rft.issue=4&rft.spage=2215&rft.epage=2230&rft.pages=2215-2230&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3210290&rft_dat=%3Cproquest_RIE%3E2799845551%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2799845551&rft_id=info:pmid/&rft_ieee_id=9912343&rfr_iscdi=true |