Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios

This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2022-12, Vol.21 (12), p.10633-10647
Hauptverfasser: Rao, Hangmei, Xiao, Sa, Yan, Shihao, Wang, Jianquan, Tang, Wanbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10647
container_issue 12
container_start_page 10633
container_title IEEE transactions on wireless communications
container_volume 21
creator Rao, Hangmei
Xiao, Sa
Yan, Shihao
Wang, Jianquan
Tang, Wanbin
description This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's trajectory is critical to the covert communication performance, since the AN transmitted by the UAV also generates interference to Bob. To maximize the system performance, we formulate an optimization problem to jointly design the UAV's trajectory and Alice's transmit power. The formulated optimization problem is non-convex and is normally solved by a conventional iterative (CI) method, which requires multiple approximations based on Taylor expansions and an initialization on the UAV's trajectory. In order to eliminate these requirements, this work, for the first time, develops a geometric (GM) method to solve the optimization problem. By analyzing the covertness constraint, the GM method decouples the joint optimization into optimizing the UAV's trajectory and Alice's transmit power separately. Our examination shows that the GM method can significantly outperform the CI method in terms of achieving a higher average covert rate and the complexity of the GM method is lower than that of the CI method.
doi_str_mv 10.1109/TWC.2022.3185492
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2022_3185492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9812482</ieee_id><sourcerecordid>2748563677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-73ee84ea4da5d94eb8a136909c25c2a4adbb358133e1a31c0739bfcb007e63293</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4soOKd3wUvBc2Z-NE1yHGVOYbDDNj14CGn6qhltM5NO8L-3o8PT9x0-3_d4nyS5J3hGCFZP2_diRjGlM0YkzxS9SCaEc4kozeTlaWY5IlTk18lNjHuMicg5nyQf60PvWtOkS_At9MHZdOObY-98F9Pep7v5G1p0pmygSgv_A6Efom2PnbNmhFyXrlwHyNdo4z6_-nRjoTPB-XibXNWmiXB3zmmye15sixe0Wi9fi_kKWapIjwQDkBmYrDK8UhmU0hCWK6ws5ZaazFRlybgkjAExjFgsmCprW2IsIGdUsWnyOO49BP99hNjrvT-Gbjipqcgkz1kuxEDhkbLBxxig1ocwfB5-NcH6pFAPCvVJoT4rHCoPY8UBwD-uJBmcUvYHiutswg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748563677</pqid></control><display><type>article</type><title>Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios</title><source>IEEE Electronic Library (IEL)</source><creator>Rao, Hangmei ; Xiao, Sa ; Yan, Shihao ; Wang, Jianquan ; Tang, Wanbin</creator><creatorcontrib>Rao, Hangmei ; Xiao, Sa ; Yan, Shihao ; Wang, Jianquan ; Tang, Wanbin</creatorcontrib><description>This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's trajectory is critical to the covert communication performance, since the AN transmitted by the UAV also generates interference to Bob. To maximize the system performance, we formulate an optimization problem to jointly design the UAV's trajectory and Alice's transmit power. The formulated optimization problem is non-convex and is normally solved by a conventional iterative (CI) method, which requires multiple approximations based on Taylor expansions and an initialization on the UAV's trajectory. In order to eliminate these requirements, this work, for the first time, develops a geometric (GM) method to solve the optimization problem. By analyzing the covertness constraint, the GM method decouples the joint optimization into optimizing the UAV's trajectory and Alice's transmit power separately. Our examination shows that the GM method can significantly outperform the CI method in terms of achieving a higher average covert rate and the complexity of the GM method is lower than that of the CI method.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3185492</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>artificial noise ; Autonomous aerial vehicles ; Covert communications ; Design optimization ; Interference ; Jamming ; Line of sight communication ; Optimization ; Receivers ; Security ; Trajectory ; trajectory design ; transmit power optimization ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2022-12, Vol.21 (12), p.10633-10647</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-73ee84ea4da5d94eb8a136909c25c2a4adbb358133e1a31c0739bfcb007e63293</citedby><cites>FETCH-LOGICAL-c291t-73ee84ea4da5d94eb8a136909c25c2a4adbb358133e1a31c0739bfcb007e63293</cites><orcidid>0000-0002-4586-1926 ; 0000-0003-3904-2817 ; 0000-0002-2346-9907 ; 0000-0001-9044-274X ; 0000-0002-1206-7953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9812482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9812482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rao, Hangmei</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Yan, Shihao</creatorcontrib><creatorcontrib>Wang, Jianquan</creatorcontrib><creatorcontrib>Tang, Wanbin</creatorcontrib><title>Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's trajectory is critical to the covert communication performance, since the AN transmitted by the UAV also generates interference to Bob. To maximize the system performance, we formulate an optimization problem to jointly design the UAV's trajectory and Alice's transmit power. The formulated optimization problem is non-convex and is normally solved by a conventional iterative (CI) method, which requires multiple approximations based on Taylor expansions and an initialization on the UAV's trajectory. In order to eliminate these requirements, this work, for the first time, develops a geometric (GM) method to solve the optimization problem. By analyzing the covertness constraint, the GM method decouples the joint optimization into optimizing the UAV's trajectory and Alice's transmit power separately. Our examination shows that the GM method can significantly outperform the CI method in terms of achieving a higher average covert rate and the complexity of the GM method is lower than that of the CI method.</description><subject>artificial noise</subject><subject>Autonomous aerial vehicles</subject><subject>Covert communications</subject><subject>Design optimization</subject><subject>Interference</subject><subject>Jamming</subject><subject>Line of sight communication</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Security</subject><subject>Trajectory</subject><subject>trajectory design</subject><subject>transmit power optimization</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4soOKd3wUvBc2Z-NE1yHGVOYbDDNj14CGn6qhltM5NO8L-3o8PT9x0-3_d4nyS5J3hGCFZP2_diRjGlM0YkzxS9SCaEc4kozeTlaWY5IlTk18lNjHuMicg5nyQf60PvWtOkS_At9MHZdOObY-98F9Pep7v5G1p0pmygSgv_A6Efom2PnbNmhFyXrlwHyNdo4z6_-nRjoTPB-XibXNWmiXB3zmmye15sixe0Wi9fi_kKWapIjwQDkBmYrDK8UhmU0hCWK6ws5ZaazFRlybgkjAExjFgsmCprW2IsIGdUsWnyOO49BP99hNjrvT-Gbjipqcgkz1kuxEDhkbLBxxig1ocwfB5-NcH6pFAPCvVJoT4rHCoPY8UBwD-uJBmcUvYHiutswg</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Rao, Hangmei</creator><creator>Xiao, Sa</creator><creator>Yan, Shihao</creator><creator>Wang, Jianquan</creator><creator>Tang, Wanbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4586-1926</orcidid><orcidid>https://orcid.org/0000-0003-3904-2817</orcidid><orcidid>https://orcid.org/0000-0002-2346-9907</orcidid><orcidid>https://orcid.org/0000-0001-9044-274X</orcidid><orcidid>https://orcid.org/0000-0002-1206-7953</orcidid></search><sort><creationdate>202212</creationdate><title>Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios</title><author>Rao, Hangmei ; Xiao, Sa ; Yan, Shihao ; Wang, Jianquan ; Tang, Wanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-73ee84ea4da5d94eb8a136909c25c2a4adbb358133e1a31c0739bfcb007e63293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial noise</topic><topic>Autonomous aerial vehicles</topic><topic>Covert communications</topic><topic>Design optimization</topic><topic>Interference</topic><topic>Jamming</topic><topic>Line of sight communication</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Security</topic><topic>Trajectory</topic><topic>trajectory design</topic><topic>transmit power optimization</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Hangmei</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Yan, Shihao</creatorcontrib><creatorcontrib>Wang, Jianquan</creatorcontrib><creatorcontrib>Tang, Wanbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rao, Hangmei</au><au>Xiao, Sa</au><au>Yan, Shihao</au><au>Wang, Jianquan</au><au>Tang, Wanbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-12</date><risdate>2022</risdate><volume>21</volume><issue>12</issue><spage>10633</spage><epage>10647</epage><pages>10633-10647</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's trajectory is critical to the covert communication performance, since the AN transmitted by the UAV also generates interference to Bob. To maximize the system performance, we formulate an optimization problem to jointly design the UAV's trajectory and Alice's transmit power. The formulated optimization problem is non-convex and is normally solved by a conventional iterative (CI) method, which requires multiple approximations based on Taylor expansions and an initialization on the UAV's trajectory. In order to eliminate these requirements, this work, for the first time, develops a geometric (GM) method to solve the optimization problem. By analyzing the covertness constraint, the GM method decouples the joint optimization into optimizing the UAV's trajectory and Alice's transmit power separately. Our examination shows that the GM method can significantly outperform the CI method in terms of achieving a higher average covert rate and the complexity of the GM method is lower than that of the CI method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3185492</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4586-1926</orcidid><orcidid>https://orcid.org/0000-0003-3904-2817</orcidid><orcidid>https://orcid.org/0000-0002-2346-9907</orcidid><orcidid>https://orcid.org/0000-0001-9044-274X</orcidid><orcidid>https://orcid.org/0000-0002-1206-7953</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2022-12, Vol.21 (12), p.10633-10647
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2022_3185492
source IEEE Electronic Library (IEL)
subjects artificial noise
Autonomous aerial vehicles
Covert communications
Design optimization
Interference
Jamming
Line of sight communication
Optimization
Receivers
Security
Trajectory
trajectory design
transmit power optimization
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Wireless communication
title Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Geometric%20Solutions%20to%20UAV-Enabled%20Covert%20Communications%20in%20Line-of-Sight%20Scenarios&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Rao,%20Hangmei&rft.date=2022-12&rft.volume=21&rft.issue=12&rft.spage=10633&rft.epage=10647&rft.pages=10633-10647&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3185492&rft_dat=%3Cproquest_RIE%3E2748563677%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748563677&rft_id=info:pmid/&rft_ieee_id=9812482&rfr_iscdi=true