Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios
This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's tr...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2022-12, Vol.21 (12), p.10633-10647 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10647 |
---|---|
container_issue | 12 |
container_start_page | 10633 |
container_title | IEEE transactions on wireless communications |
container_volume | 21 |
creator | Rao, Hangmei Xiao, Sa Yan, Shihao Wang, Jianquan Tang, Wanbin |
description | This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's trajectory is critical to the covert communication performance, since the AN transmitted by the UAV also generates interference to Bob. To maximize the system performance, we formulate an optimization problem to jointly design the UAV's trajectory and Alice's transmit power. The formulated optimization problem is non-convex and is normally solved by a conventional iterative (CI) method, which requires multiple approximations based on Taylor expansions and an initialization on the UAV's trajectory. In order to eliminate these requirements, this work, for the first time, develops a geometric (GM) method to solve the optimization problem. By analyzing the covertness constraint, the GM method decouples the joint optimization into optimizing the UAV's trajectory and Alice's transmit power separately. Our examination shows that the GM method can significantly outperform the CI method in terms of achieving a higher average covert rate and the complexity of the GM method is lower than that of the CI method. |
doi_str_mv | 10.1109/TWC.2022.3185492 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2022_3185492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9812482</ieee_id><sourcerecordid>2748563677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-73ee84ea4da5d94eb8a136909c25c2a4adbb358133e1a31c0739bfcb007e63293</originalsourceid><addsrcrecordid>eNo9kM9LwzAUx4soOKd3wUvBc2Z-NE1yHGVOYbDDNj14CGn6qhltM5NO8L-3o8PT9x0-3_d4nyS5J3hGCFZP2_diRjGlM0YkzxS9SCaEc4kozeTlaWY5IlTk18lNjHuMicg5nyQf60PvWtOkS_At9MHZdOObY-98F9Pep7v5G1p0pmygSgv_A6Efom2PnbNmhFyXrlwHyNdo4z6_-nRjoTPB-XibXNWmiXB3zmmye15sixe0Wi9fi_kKWapIjwQDkBmYrDK8UhmU0hCWK6ws5ZaazFRlybgkjAExjFgsmCprW2IsIGdUsWnyOO49BP99hNjrvT-Gbjipqcgkz1kuxEDhkbLBxxig1ocwfB5-NcH6pFAPCvVJoT4rHCoPY8UBwD-uJBmcUvYHiutswg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2748563677</pqid></control><display><type>article</type><title>Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios</title><source>IEEE Electronic Library (IEL)</source><creator>Rao, Hangmei ; Xiao, Sa ; Yan, Shihao ; Wang, Jianquan ; Tang, Wanbin</creator><creatorcontrib>Rao, Hangmei ; Xiao, Sa ; Yan, Shihao ; Wang, Jianquan ; Tang, Wanbin</creatorcontrib><description>This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's trajectory is critical to the covert communication performance, since the AN transmitted by the UAV also generates interference to Bob. To maximize the system performance, we formulate an optimization problem to jointly design the UAV's trajectory and Alice's transmit power. The formulated optimization problem is non-convex and is normally solved by a conventional iterative (CI) method, which requires multiple approximations based on Taylor expansions and an initialization on the UAV's trajectory. In order to eliminate these requirements, this work, for the first time, develops a geometric (GM) method to solve the optimization problem. By analyzing the covertness constraint, the GM method decouples the joint optimization into optimizing the UAV's trajectory and Alice's transmit power separately. Our examination shows that the GM method can significantly outperform the CI method in terms of achieving a higher average covert rate and the complexity of the GM method is lower than that of the CI method.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2022.3185492</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>artificial noise ; Autonomous aerial vehicles ; Covert communications ; Design optimization ; Interference ; Jamming ; Line of sight communication ; Optimization ; Receivers ; Security ; Trajectory ; trajectory design ; transmit power optimization ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2022-12, Vol.21 (12), p.10633-10647</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-73ee84ea4da5d94eb8a136909c25c2a4adbb358133e1a31c0739bfcb007e63293</citedby><cites>FETCH-LOGICAL-c291t-73ee84ea4da5d94eb8a136909c25c2a4adbb358133e1a31c0739bfcb007e63293</cites><orcidid>0000-0002-4586-1926 ; 0000-0003-3904-2817 ; 0000-0002-2346-9907 ; 0000-0001-9044-274X ; 0000-0002-1206-7953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9812482$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9812482$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rao, Hangmei</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Yan, Shihao</creatorcontrib><creatorcontrib>Wang, Jianquan</creatorcontrib><creatorcontrib>Tang, Wanbin</creatorcontrib><title>Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's trajectory is critical to the covert communication performance, since the AN transmitted by the UAV also generates interference to Bob. To maximize the system performance, we formulate an optimization problem to jointly design the UAV's trajectory and Alice's transmit power. The formulated optimization problem is non-convex and is normally solved by a conventional iterative (CI) method, which requires multiple approximations based on Taylor expansions and an initialization on the UAV's trajectory. In order to eliminate these requirements, this work, for the first time, develops a geometric (GM) method to solve the optimization problem. By analyzing the covertness constraint, the GM method decouples the joint optimization into optimizing the UAV's trajectory and Alice's transmit power separately. Our examination shows that the GM method can significantly outperform the CI method in terms of achieving a higher average covert rate and the complexity of the GM method is lower than that of the CI method.</description><subject>artificial noise</subject><subject>Autonomous aerial vehicles</subject><subject>Covert communications</subject><subject>Design optimization</subject><subject>Interference</subject><subject>Jamming</subject><subject>Line of sight communication</subject><subject>Optimization</subject><subject>Receivers</subject><subject>Security</subject><subject>Trajectory</subject><subject>trajectory design</subject><subject>transmit power optimization</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM9LwzAUx4soOKd3wUvBc2Z-NE1yHGVOYbDDNj14CGn6qhltM5NO8L-3o8PT9x0-3_d4nyS5J3hGCFZP2_diRjGlM0YkzxS9SCaEc4kozeTlaWY5IlTk18lNjHuMicg5nyQf60PvWtOkS_At9MHZdOObY-98F9Pep7v5G1p0pmygSgv_A6Efom2PnbNmhFyXrlwHyNdo4z6_-nRjoTPB-XibXNWmiXB3zmmye15sixe0Wi9fi_kKWapIjwQDkBmYrDK8UhmU0hCWK6ws5ZaazFRlybgkjAExjFgsmCprW2IsIGdUsWnyOO49BP99hNjrvT-Gbjipqcgkz1kuxEDhkbLBxxig1ocwfB5-NcH6pFAPCvVJoT4rHCoPY8UBwD-uJBmcUvYHiutswg</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Rao, Hangmei</creator><creator>Xiao, Sa</creator><creator>Yan, Shihao</creator><creator>Wang, Jianquan</creator><creator>Tang, Wanbin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4586-1926</orcidid><orcidid>https://orcid.org/0000-0003-3904-2817</orcidid><orcidid>https://orcid.org/0000-0002-2346-9907</orcidid><orcidid>https://orcid.org/0000-0001-9044-274X</orcidid><orcidid>https://orcid.org/0000-0002-1206-7953</orcidid></search><sort><creationdate>202212</creationdate><title>Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios</title><author>Rao, Hangmei ; Xiao, Sa ; Yan, Shihao ; Wang, Jianquan ; Tang, Wanbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-73ee84ea4da5d94eb8a136909c25c2a4adbb358133e1a31c0739bfcb007e63293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial noise</topic><topic>Autonomous aerial vehicles</topic><topic>Covert communications</topic><topic>Design optimization</topic><topic>Interference</topic><topic>Jamming</topic><topic>Line of sight communication</topic><topic>Optimization</topic><topic>Receivers</topic><topic>Security</topic><topic>Trajectory</topic><topic>trajectory design</topic><topic>transmit power optimization</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Hangmei</creatorcontrib><creatorcontrib>Xiao, Sa</creatorcontrib><creatorcontrib>Yan, Shihao</creatorcontrib><creatorcontrib>Wang, Jianquan</creatorcontrib><creatorcontrib>Tang, Wanbin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rao, Hangmei</au><au>Xiao, Sa</au><au>Yan, Shihao</au><au>Wang, Jianquan</au><au>Tang, Wanbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2022-12</date><risdate>2022</risdate><volume>21</volume><issue>12</issue><spage>10633</spage><epage>10647</epage><pages>10633-10647</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>This work employs an unmanned aerial vehicle (UAV) as a jammer to aid a covert communication from a transmitter Alice to a receiver Bob, where the UAV transmits artificial noise (AN) with random power to deliberately create interference to a warden Willie. In the considered system, the UAV's trajectory is critical to the covert communication performance, since the AN transmitted by the UAV also generates interference to Bob. To maximize the system performance, we formulate an optimization problem to jointly design the UAV's trajectory and Alice's transmit power. The formulated optimization problem is non-convex and is normally solved by a conventional iterative (CI) method, which requires multiple approximations based on Taylor expansions and an initialization on the UAV's trajectory. In order to eliminate these requirements, this work, for the first time, develops a geometric (GM) method to solve the optimization problem. By analyzing the covertness constraint, the GM method decouples the joint optimization into optimizing the UAV's trajectory and Alice's transmit power separately. Our examination shows that the GM method can significantly outperform the CI method in terms of achieving a higher average covert rate and the complexity of the GM method is lower than that of the CI method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2022.3185492</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4586-1926</orcidid><orcidid>https://orcid.org/0000-0003-3904-2817</orcidid><orcidid>https://orcid.org/0000-0002-2346-9907</orcidid><orcidid>https://orcid.org/0000-0001-9044-274X</orcidid><orcidid>https://orcid.org/0000-0002-1206-7953</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2022-12, Vol.21 (12), p.10633-10647 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2022_3185492 |
source | IEEE Electronic Library (IEL) |
subjects | artificial noise Autonomous aerial vehicles Covert communications Design optimization Interference Jamming Line of sight communication Optimization Receivers Security Trajectory trajectory design transmit power optimization unmanned aerial vehicle (UAV) Unmanned aerial vehicles Wireless communication |
title | Optimal Geometric Solutions to UAV-Enabled Covert Communications in Line-of-Sight Scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Geometric%20Solutions%20to%20UAV-Enabled%20Covert%20Communications%20in%20Line-of-Sight%20Scenarios&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Rao,%20Hangmei&rft.date=2022-12&rft.volume=21&rft.issue=12&rft.spage=10633&rft.epage=10647&rft.pages=10633-10647&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2022.3185492&rft_dat=%3Cproquest_RIE%3E2748563677%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2748563677&rft_id=info:pmid/&rft_ieee_id=9812482&rfr_iscdi=true |