A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks
Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2021-11, Vol.20 (11), p.7538-7554 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7554 |
---|---|
container_issue | 11 |
container_start_page | 7538 |
container_title | IEEE transactions on wireless communications |
container_volume | 20 |
creator | Chatterjee, Shubhajeet Abdel-Rahman, Mohammad J. MacKenzie, Allen B. |
description | Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context, we propose a joint optimization framework to determine the minimum number of required access points (APs), their optimal locations, their optimal beam directions, and their optimal assignments to individual UEs in order to maintain a network-wide signal-to-noise ratio (SNR) coverage and stable connections. The network deployment decisions (i.e., the required number of APs, their placements, and their beam directions) are static and are taken before UE locations and channel conditions are revealed. The UE assignment decisions are taken under each realization of UE locations and channel conditions considering the availability and stability of the mmW beams. We develop our joint optimization framework following a two-stage chance-constrained stochastic optimization model. Our numerical results demonstrate the gains brought by our proposed framework in terms of reducing cost of network deployment while ensuring a network-wide SNR coverage and stable connections under various UE distributions and system parameters. |
doi_str_mv | 10.1109/TWC.2021.3085563 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2021_3085563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9481194</ieee_id><sourcerecordid>2595718572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-23d46c6e727addff9d885cd39c1bded16518cdc2140c197066ff9e1dd3df6f73</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhCMEEqVwR-JiiXOK144fOVaFQlGhl6IerRA7yCWJg52Cyq_HfYjTjjTfzEqTJNeARwA4v1uuJiOCCYwoloxxepIMgDGZEpLJ052mPAUi-HlyEcIaYxCcsUGyGaNnZ9seLbreNva36K1r0dQXjflx_hNVzqNX0-_1velqt21MpItWo7EuYubboLdgPBqHYD_avWlbNGu1i8kXW9e2MX30V0Ukj03hMjmrijqYq-MdJsvpw3LylM4Xj7PJeJ6WlNI-JVRnvORGEFFoXVW5lpKVmuYlvGujgTOQpS4JZLiEXGDOI2NAa6orXgk6TG4PtZ13XxsTerV2G9_Gj4qwnAmQTJBI4QNVeheCN5XqvG0Kv1WA1W5bFbdVu23VcdsYuTlErDHmH88zCZBn9A-Km3dj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595718572</pqid></control><display><type>article</type><title>A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Chatterjee, Shubhajeet ; Abdel-Rahman, Mohammad J. ; MacKenzie, Allen B.</creator><creatorcontrib>Chatterjee, Shubhajeet ; Abdel-Rahman, Mohammad J. ; MacKenzie, Allen B.</creatorcontrib><description>Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context, we propose a joint optimization framework to determine the minimum number of required access points (APs), their optimal locations, their optimal beam directions, and their optimal assignments to individual UEs in order to maintain a network-wide signal-to-noise ratio (SNR) coverage and stable connections. The network deployment decisions (i.e., the required number of APs, their placements, and their beam directions) are static and are taken before UE locations and channel conditions are revealed. The UE assignment decisions are taken under each realization of UE locations and channel conditions considering the availability and stability of the mmW beams. We develop our joint optimization framework following a two-stage chance-constrained stochastic optimization model. Our numerical results demonstrate the gains brought by our proposed framework in terms of reducing cost of network deployment while ensuring a network-wide SNR coverage and stable connections under various UE distributions and system parameters.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3085563</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>access point deployment ; Beamforming ; Cellular networks ; coverage probability ; Decisions ; Delays ; Downlink ; Millimeter wave communications ; Millimeter waves ; Optimization ; Signal to noise ratio ; Stochastic processes ; two-stage chance-constrained stochastic optimization ; Uncertainty</subject><ispartof>IEEE transactions on wireless communications, 2021-11, Vol.20 (11), p.7538-7554</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-23d46c6e727addff9d885cd39c1bded16518cdc2140c197066ff9e1dd3df6f73</citedby><cites>FETCH-LOGICAL-c333t-23d46c6e727addff9d885cd39c1bded16518cdc2140c197066ff9e1dd3df6f73</cites><orcidid>0000-0003-4041-5609 ; 0000-0001-5788-6656 ; 0000-0002-8038-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9481194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9481194$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chatterjee, Shubhajeet</creatorcontrib><creatorcontrib>Abdel-Rahman, Mohammad J.</creatorcontrib><creatorcontrib>MacKenzie, Allen B.</creatorcontrib><title>A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context, we propose a joint optimization framework to determine the minimum number of required access points (APs), their optimal locations, their optimal beam directions, and their optimal assignments to individual UEs in order to maintain a network-wide signal-to-noise ratio (SNR) coverage and stable connections. The network deployment decisions (i.e., the required number of APs, their placements, and their beam directions) are static and are taken before UE locations and channel conditions are revealed. The UE assignment decisions are taken under each realization of UE locations and channel conditions considering the availability and stability of the mmW beams. We develop our joint optimization framework following a two-stage chance-constrained stochastic optimization model. Our numerical results demonstrate the gains brought by our proposed framework in terms of reducing cost of network deployment while ensuring a network-wide SNR coverage and stable connections under various UE distributions and system parameters.</description><subject>access point deployment</subject><subject>Beamforming</subject><subject>Cellular networks</subject><subject>coverage probability</subject><subject>Decisions</subject><subject>Delays</subject><subject>Downlink</subject><subject>Millimeter wave communications</subject><subject>Millimeter waves</subject><subject>Optimization</subject><subject>Signal to noise ratio</subject><subject>Stochastic processes</subject><subject>two-stage chance-constrained stochastic optimization</subject><subject>Uncertainty</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhCMEEqVwR-JiiXOK144fOVaFQlGhl6IerRA7yCWJg52Cyq_HfYjTjjTfzEqTJNeARwA4v1uuJiOCCYwoloxxepIMgDGZEpLJ052mPAUi-HlyEcIaYxCcsUGyGaNnZ9seLbreNva36K1r0dQXjflx_hNVzqNX0-_1velqt21MpItWo7EuYubboLdgPBqHYD_avWlbNGu1i8kXW9e2MX30V0Ukj03hMjmrijqYq-MdJsvpw3LylM4Xj7PJeJ6WlNI-JVRnvORGEFFoXVW5lpKVmuYlvGujgTOQpS4JZLiEXGDOI2NAa6orXgk6TG4PtZ13XxsTerV2G9_Gj4qwnAmQTJBI4QNVeheCN5XqvG0Kv1WA1W5bFbdVu23VcdsYuTlErDHmH88zCZBn9A-Km3dj</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Chatterjee, Shubhajeet</creator><creator>Abdel-Rahman, Mohammad J.</creator><creator>MacKenzie, Allen B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4041-5609</orcidid><orcidid>https://orcid.org/0000-0001-5788-6656</orcidid><orcidid>https://orcid.org/0000-0002-8038-2429</orcidid></search><sort><creationdate>202111</creationdate><title>A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks</title><author>Chatterjee, Shubhajeet ; Abdel-Rahman, Mohammad J. ; MacKenzie, Allen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-23d46c6e727addff9d885cd39c1bded16518cdc2140c197066ff9e1dd3df6f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>access point deployment</topic><topic>Beamforming</topic><topic>Cellular networks</topic><topic>coverage probability</topic><topic>Decisions</topic><topic>Delays</topic><topic>Downlink</topic><topic>Millimeter wave communications</topic><topic>Millimeter waves</topic><topic>Optimization</topic><topic>Signal to noise ratio</topic><topic>Stochastic processes</topic><topic>two-stage chance-constrained stochastic optimization</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Shubhajeet</creatorcontrib><creatorcontrib>Abdel-Rahman, Mohammad J.</creatorcontrib><creatorcontrib>MacKenzie, Allen B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chatterjee, Shubhajeet</au><au>Abdel-Rahman, Mohammad J.</au><au>MacKenzie, Allen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-11</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><spage>7538</spage><epage>7554</epage><pages>7538-7554</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context, we propose a joint optimization framework to determine the minimum number of required access points (APs), their optimal locations, their optimal beam directions, and their optimal assignments to individual UEs in order to maintain a network-wide signal-to-noise ratio (SNR) coverage and stable connections. The network deployment decisions (i.e., the required number of APs, their placements, and their beam directions) are static and are taken before UE locations and channel conditions are revealed. The UE assignment decisions are taken under each realization of UE locations and channel conditions considering the availability and stability of the mmW beams. We develop our joint optimization framework following a two-stage chance-constrained stochastic optimization model. Our numerical results demonstrate the gains brought by our proposed framework in terms of reducing cost of network deployment while ensuring a network-wide SNR coverage and stable connections under various UE distributions and system parameters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3085563</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4041-5609</orcidid><orcidid>https://orcid.org/0000-0001-5788-6656</orcidid><orcidid>https://orcid.org/0000-0002-8038-2429</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2021-11, Vol.20 (11), p.7538-7554 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2021_3085563 |
source | IEEE Electronic Library (IEL) |
subjects | access point deployment Beamforming Cellular networks coverage probability Decisions Delays Downlink Millimeter wave communications Millimeter waves Optimization Signal to noise ratio Stochastic processes two-stage chance-constrained stochastic optimization Uncertainty |
title | A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Joint%20Optimization%20Framework%20for%20Network%20Deployment%20and%20Adaptive%20User%20Assignment%20in%20Indoor%20Millimeter%20Wave%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Chatterjee,%20Shubhajeet&rft.date=2021-11&rft.volume=20&rft.issue=11&rft.spage=7538&rft.epage=7554&rft.pages=7538-7554&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3085563&rft_dat=%3Cproquest_RIE%3E2595718572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595718572&rft_id=info:pmid/&rft_ieee_id=9481194&rfr_iscdi=true |