A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks

Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2021-11, Vol.20 (11), p.7538-7554
Hauptverfasser: Chatterjee, Shubhajeet, Abdel-Rahman, Mohammad J., MacKenzie, Allen B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7554
container_issue 11
container_start_page 7538
container_title IEEE transactions on wireless communications
container_volume 20
creator Chatterjee, Shubhajeet
Abdel-Rahman, Mohammad J.
MacKenzie, Allen B.
description Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context, we propose a joint optimization framework to determine the minimum number of required access points (APs), their optimal locations, their optimal beam directions, and their optimal assignments to individual UEs in order to maintain a network-wide signal-to-noise ratio (SNR) coverage and stable connections. The network deployment decisions (i.e., the required number of APs, their placements, and their beam directions) are static and are taken before UE locations and channel conditions are revealed. The UE assignment decisions are taken under each realization of UE locations and channel conditions considering the availability and stability of the mmW beams. We develop our joint optimization framework following a two-stage chance-constrained stochastic optimization model. Our numerical results demonstrate the gains brought by our proposed framework in terms of reducing cost of network deployment while ensuring a network-wide SNR coverage and stable connections under various UE distributions and system parameters.
doi_str_mv 10.1109/TWC.2021.3085563
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2021_3085563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9481194</ieee_id><sourcerecordid>2595718572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-23d46c6e727addff9d885cd39c1bded16518cdc2140c197066ff9e1dd3df6f73</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhCMEEqVwR-JiiXOK144fOVaFQlGhl6IerRA7yCWJg52Cyq_HfYjTjjTfzEqTJNeARwA4v1uuJiOCCYwoloxxepIMgDGZEpLJ052mPAUi-HlyEcIaYxCcsUGyGaNnZ9seLbreNva36K1r0dQXjflx_hNVzqNX0-_1velqt21MpItWo7EuYubboLdgPBqHYD_avWlbNGu1i8kXW9e2MX30V0Ukj03hMjmrijqYq-MdJsvpw3LylM4Xj7PJeJ6WlNI-JVRnvORGEFFoXVW5lpKVmuYlvGujgTOQpS4JZLiEXGDOI2NAa6orXgk6TG4PtZ13XxsTerV2G9_Gj4qwnAmQTJBI4QNVeheCN5XqvG0Kv1WA1W5bFbdVu23VcdsYuTlErDHmH88zCZBn9A-Km3dj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2595718572</pqid></control><display><type>article</type><title>A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Chatterjee, Shubhajeet ; Abdel-Rahman, Mohammad J. ; MacKenzie, Allen B.</creator><creatorcontrib>Chatterjee, Shubhajeet ; Abdel-Rahman, Mohammad J. ; MacKenzie, Allen B.</creatorcontrib><description>Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context, we propose a joint optimization framework to determine the minimum number of required access points (APs), their optimal locations, their optimal beam directions, and their optimal assignments to individual UEs in order to maintain a network-wide signal-to-noise ratio (SNR) coverage and stable connections. The network deployment decisions (i.e., the required number of APs, their placements, and their beam directions) are static and are taken before UE locations and channel conditions are revealed. The UE assignment decisions are taken under each realization of UE locations and channel conditions considering the availability and stability of the mmW beams. We develop our joint optimization framework following a two-stage chance-constrained stochastic optimization model. Our numerical results demonstrate the gains brought by our proposed framework in terms of reducing cost of network deployment while ensuring a network-wide SNR coverage and stable connections under various UE distributions and system parameters.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3085563</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>access point deployment ; Beamforming ; Cellular networks ; coverage probability ; Decisions ; Delays ; Downlink ; Millimeter wave communications ; Millimeter waves ; Optimization ; Signal to noise ratio ; Stochastic processes ; two-stage chance-constrained stochastic optimization ; Uncertainty</subject><ispartof>IEEE transactions on wireless communications, 2021-11, Vol.20 (11), p.7538-7554</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-23d46c6e727addff9d885cd39c1bded16518cdc2140c197066ff9e1dd3df6f73</citedby><cites>FETCH-LOGICAL-c333t-23d46c6e727addff9d885cd39c1bded16518cdc2140c197066ff9e1dd3df6f73</cites><orcidid>0000-0003-4041-5609 ; 0000-0001-5788-6656 ; 0000-0002-8038-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9481194$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9481194$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chatterjee, Shubhajeet</creatorcontrib><creatorcontrib>Abdel-Rahman, Mohammad J.</creatorcontrib><creatorcontrib>MacKenzie, Allen B.</creatorcontrib><title>A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context, we propose a joint optimization framework to determine the minimum number of required access points (APs), their optimal locations, their optimal beam directions, and their optimal assignments to individual UEs in order to maintain a network-wide signal-to-noise ratio (SNR) coverage and stable connections. The network deployment decisions (i.e., the required number of APs, their placements, and their beam directions) are static and are taken before UE locations and channel conditions are revealed. The UE assignment decisions are taken under each realization of UE locations and channel conditions considering the availability and stability of the mmW beams. We develop our joint optimization framework following a two-stage chance-constrained stochastic optimization model. Our numerical results demonstrate the gains brought by our proposed framework in terms of reducing cost of network deployment while ensuring a network-wide SNR coverage and stable connections under various UE distributions and system parameters.</description><subject>access point deployment</subject><subject>Beamforming</subject><subject>Cellular networks</subject><subject>coverage probability</subject><subject>Decisions</subject><subject>Delays</subject><subject>Downlink</subject><subject>Millimeter wave communications</subject><subject>Millimeter waves</subject><subject>Optimization</subject><subject>Signal to noise ratio</subject><subject>Stochastic processes</subject><subject>two-stage chance-constrained stochastic optimization</subject><subject>Uncertainty</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhCMEEqVwR-JiiXOK144fOVaFQlGhl6IerRA7yCWJg52Cyq_HfYjTjjTfzEqTJNeARwA4v1uuJiOCCYwoloxxepIMgDGZEpLJ052mPAUi-HlyEcIaYxCcsUGyGaNnZ9seLbreNva36K1r0dQXjflx_hNVzqNX0-_1velqt21MpItWo7EuYubboLdgPBqHYD_avWlbNGu1i8kXW9e2MX30V0Ukj03hMjmrijqYq-MdJsvpw3LylM4Xj7PJeJ6WlNI-JVRnvORGEFFoXVW5lpKVmuYlvGujgTOQpS4JZLiEXGDOI2NAa6orXgk6TG4PtZ13XxsTerV2G9_Gj4qwnAmQTJBI4QNVeheCN5XqvG0Kv1WA1W5bFbdVu23VcdsYuTlErDHmH88zCZBn9A-Km3dj</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Chatterjee, Shubhajeet</creator><creator>Abdel-Rahman, Mohammad J.</creator><creator>MacKenzie, Allen B.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4041-5609</orcidid><orcidid>https://orcid.org/0000-0001-5788-6656</orcidid><orcidid>https://orcid.org/0000-0002-8038-2429</orcidid></search><sort><creationdate>202111</creationdate><title>A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks</title><author>Chatterjee, Shubhajeet ; Abdel-Rahman, Mohammad J. ; MacKenzie, Allen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-23d46c6e727addff9d885cd39c1bded16518cdc2140c197066ff9e1dd3df6f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>access point deployment</topic><topic>Beamforming</topic><topic>Cellular networks</topic><topic>coverage probability</topic><topic>Decisions</topic><topic>Delays</topic><topic>Downlink</topic><topic>Millimeter wave communications</topic><topic>Millimeter waves</topic><topic>Optimization</topic><topic>Signal to noise ratio</topic><topic>Stochastic processes</topic><topic>two-stage chance-constrained stochastic optimization</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chatterjee, Shubhajeet</creatorcontrib><creatorcontrib>Abdel-Rahman, Mohammad J.</creatorcontrib><creatorcontrib>MacKenzie, Allen B.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chatterjee, Shubhajeet</au><au>Abdel-Rahman, Mohammad J.</au><au>MacKenzie, Allen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-11</date><risdate>2021</risdate><volume>20</volume><issue>11</issue><spage>7538</spage><epage>7554</epage><pages>7538-7554</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Millimeter wave (mmW) systems typically use beamforming techniques to compensate for the high pathloss. However, directional communications in the presence of uncertainty in user equipment (UE) locations and channel conditions make maintaining coverage and connectivity challenging. In this context, we propose a joint optimization framework to determine the minimum number of required access points (APs), their optimal locations, their optimal beam directions, and their optimal assignments to individual UEs in order to maintain a network-wide signal-to-noise ratio (SNR) coverage and stable connections. The network deployment decisions (i.e., the required number of APs, their placements, and their beam directions) are static and are taken before UE locations and channel conditions are revealed. The UE assignment decisions are taken under each realization of UE locations and channel conditions considering the availability and stability of the mmW beams. We develop our joint optimization framework following a two-stage chance-constrained stochastic optimization model. Our numerical results demonstrate the gains brought by our proposed framework in terms of reducing cost of network deployment while ensuring a network-wide SNR coverage and stable connections under various UE distributions and system parameters.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3085563</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4041-5609</orcidid><orcidid>https://orcid.org/0000-0001-5788-6656</orcidid><orcidid>https://orcid.org/0000-0002-8038-2429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2021-11, Vol.20 (11), p.7538-7554
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2021_3085563
source IEEE Electronic Library (IEL)
subjects access point deployment
Beamforming
Cellular networks
coverage probability
Decisions
Delays
Downlink
Millimeter wave communications
Millimeter waves
Optimization
Signal to noise ratio
Stochastic processes
two-stage chance-constrained stochastic optimization
Uncertainty
title A Joint Optimization Framework for Network Deployment and Adaptive User Assignment in Indoor Millimeter Wave Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T11%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Joint%20Optimization%20Framework%20for%20Network%20Deployment%20and%20Adaptive%20User%20Assignment%20in%20Indoor%20Millimeter%20Wave%20Networks&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Chatterjee,%20Shubhajeet&rft.date=2021-11&rft.volume=20&rft.issue=11&rft.spage=7538&rft.epage=7554&rft.pages=7538-7554&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3085563&rft_dat=%3Cproquest_RIE%3E2595718572%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2595718572&rft_id=info:pmid/&rft_ieee_id=9481194&rfr_iscdi=true