Backhaul Aware User-Specific Cell Association Using Q-Learning

With the advent of network densification and the development of other radio interface technologies, the major bottleneck of future cellular networks is shifting from the radio access network to the backhaul. The future networks are expected to handle a wide range of applications and users with diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2019-07, Vol.18 (7), p.3528-3541
Hauptverfasser: Valente Klaine, Paulo, Jaber, Mona, Souza, Richard Demo, Imran, Muhammad Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3541
container_issue 7
container_start_page 3528
container_title IEEE transactions on wireless communications
container_volume 18
creator Valente Klaine, Paulo
Jaber, Mona
Souza, Richard Demo
Imran, Muhammad Ali
description With the advent of network densification and the development of other radio interface technologies, the major bottleneck of future cellular networks is shifting from the radio access network to the backhaul. The future networks are expected to handle a wide range of applications and users with different requirements. In order to tackle the problem of downlink user-cell association, and allocate users to the best cell, an intelligent solution based on reinforcement learning is proposed. A distributed solution based on Q-Learning is developed in order to determine the best cell range extension offsets (CREOs) for each small cell (SC) and the best weights of each user requirement to efficiently allocate users to the most appropriate SC, based on both backhaul constraints and user demands. By optimizing both CREOs and user weights, a user-specific allocation can be achieved, resulting in a better overall quality of service. The results show that the proposed algorithm outperforms current solutions by achieving better user satisfaction, mitigating the total number of users in outage, and minimizing user dissatisfaction when satisfaction is not possible.
doi_str_mv 10.1109/TWC.2019.2915083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2019_2915083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8714042</ieee_id><sourcerecordid>2255858755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-bedf5267df31cf2834e6252d85d11216004f5efb7fcac2a47b5856d83e537a73</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wcuC59R87CTpRaiLX1AQseIxpNmJptbdmrSI_70pLZ7mwXtvhvkRcs7ZiHM2vpq9NSPB-HgkxhyYkQdkwAEMFaI2h1stFeVCq2NykvOCMa4VwIBc3zj_-eE2y2ry4xJWrxkTfVmhjyH6qsFlMXLufXTr2HfFjt179Uyn6FJX5Ck5Cm6Z8Ww_h2R2dztrHuj06f6xmUypl1Ku6RzbAELpNkjugzCyRiVAtAZazgVXjNUBMMx18M4LV-s5GFCtkQhSOy2H5HK3dpX67w3mtV30m9SVi1aI8iUYDVBSbJfyqc85YbCrFL9c-rWc2S0kWyDZLSS7h1QqF7tKRMT_uNG8ZrWQf7ooYT0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2255858755</pqid></control><display><type>article</type><title>Backhaul Aware User-Specific Cell Association Using Q-Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Valente Klaine, Paulo ; Jaber, Mona ; Souza, Richard Demo ; Imran, Muhammad Ali</creator><creatorcontrib>Valente Klaine, Paulo ; Jaber, Mona ; Souza, Richard Demo ; Imran, Muhammad Ali</creatorcontrib><description>With the advent of network densification and the development of other radio interface technologies, the major bottleneck of future cellular networks is shifting from the radio access network to the backhaul. The future networks are expected to handle a wide range of applications and users with different requirements. In order to tackle the problem of downlink user-cell association, and allocate users to the best cell, an intelligent solution based on reinforcement learning is proposed. A distributed solution based on Q-Learning is developed in order to determine the best cell range extension offsets (CREOs) for each small cell (SC) and the best weights of each user requirement to efficiently allocate users to the most appropriate SC, based on both backhaul constraints and user demands. By optimizing both CREOs and user weights, a user-specific allocation can be achieved, resulting in a better overall quality of service. The results show that the proposed algorithm outperforms current solutions by achieving better user satisfaction, mitigating the total number of users in outage, and minimizing user dissatisfaction when satisfaction is not possible.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2019.2915083</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>5G mobile communication ; Algorithms ; backhaul ; cell association ; Cellular communication ; Cellular networks ; Densification ; Heterogeneous networks ; Machine learning ; Offsets ; Optimization ; Q-learning ; Quality of service ; reinforcement learning ; Resource management ; Self organizing networks ; Throughput ; User requirements ; User satisfaction</subject><ispartof>IEEE transactions on wireless communications, 2019-07, Vol.18 (7), p.3528-3541</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-bedf5267df31cf2834e6252d85d11216004f5efb7fcac2a47b5856d83e537a73</citedby><cites>FETCH-LOGICAL-c333t-bedf5267df31cf2834e6252d85d11216004f5efb7fcac2a47b5856d83e537a73</cites><orcidid>0000-0002-0908-3207 ; 0000-0002-7389-6245 ; 0000-0002-0712-9160 ; 0000-0003-4743-9136</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8714042$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids></links><search><creatorcontrib>Valente Klaine, Paulo</creatorcontrib><creatorcontrib>Jaber, Mona</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Imran, Muhammad Ali</creatorcontrib><title>Backhaul Aware User-Specific Cell Association Using Q-Learning</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>With the advent of network densification and the development of other radio interface technologies, the major bottleneck of future cellular networks is shifting from the radio access network to the backhaul. The future networks are expected to handle a wide range of applications and users with different requirements. In order to tackle the problem of downlink user-cell association, and allocate users to the best cell, an intelligent solution based on reinforcement learning is proposed. A distributed solution based on Q-Learning is developed in order to determine the best cell range extension offsets (CREOs) for each small cell (SC) and the best weights of each user requirement to efficiently allocate users to the most appropriate SC, based on both backhaul constraints and user demands. By optimizing both CREOs and user weights, a user-specific allocation can be achieved, resulting in a better overall quality of service. The results show that the proposed algorithm outperforms current solutions by achieving better user satisfaction, mitigating the total number of users in outage, and minimizing user dissatisfaction when satisfaction is not possible.</description><subject>5G mobile communication</subject><subject>Algorithms</subject><subject>backhaul</subject><subject>cell association</subject><subject>Cellular communication</subject><subject>Cellular networks</subject><subject>Densification</subject><subject>Heterogeneous networks</subject><subject>Machine learning</subject><subject>Offsets</subject><subject>Optimization</subject><subject>Q-learning</subject><subject>Quality of service</subject><subject>reinforcement learning</subject><subject>Resource management</subject><subject>Self organizing networks</subject><subject>Throughput</subject><subject>User requirements</subject><subject>User satisfaction</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wcuC59R87CTpRaiLX1AQseIxpNmJptbdmrSI_70pLZ7mwXtvhvkRcs7ZiHM2vpq9NSPB-HgkxhyYkQdkwAEMFaI2h1stFeVCq2NykvOCMa4VwIBc3zj_-eE2y2ry4xJWrxkTfVmhjyH6qsFlMXLufXTr2HfFjt179Uyn6FJX5Ck5Cm6Z8Ww_h2R2dztrHuj06f6xmUypl1Ku6RzbAELpNkjugzCyRiVAtAZazgVXjNUBMMx18M4LV-s5GFCtkQhSOy2H5HK3dpX67w3mtV30m9SVi1aI8iUYDVBSbJfyqc85YbCrFL9c-rWc2S0kWyDZLSS7h1QqF7tKRMT_uNG8ZrWQf7ooYT0</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Valente Klaine, Paulo</creator><creator>Jaber, Mona</creator><creator>Souza, Richard Demo</creator><creator>Imran, Muhammad Ali</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0908-3207</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid><orcidid>https://orcid.org/0000-0002-0712-9160</orcidid><orcidid>https://orcid.org/0000-0003-4743-9136</orcidid></search><sort><creationdate>201907</creationdate><title>Backhaul Aware User-Specific Cell Association Using Q-Learning</title><author>Valente Klaine, Paulo ; Jaber, Mona ; Souza, Richard Demo ; Imran, Muhammad Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-bedf5267df31cf2834e6252d85d11216004f5efb7fcac2a47b5856d83e537a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>5G mobile communication</topic><topic>Algorithms</topic><topic>backhaul</topic><topic>cell association</topic><topic>Cellular communication</topic><topic>Cellular networks</topic><topic>Densification</topic><topic>Heterogeneous networks</topic><topic>Machine learning</topic><topic>Offsets</topic><topic>Optimization</topic><topic>Q-learning</topic><topic>Quality of service</topic><topic>reinforcement learning</topic><topic>Resource management</topic><topic>Self organizing networks</topic><topic>Throughput</topic><topic>User requirements</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valente Klaine, Paulo</creatorcontrib><creatorcontrib>Jaber, Mona</creatorcontrib><creatorcontrib>Souza, Richard Demo</creatorcontrib><creatorcontrib>Imran, Muhammad Ali</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valente Klaine, Paulo</au><au>Jaber, Mona</au><au>Souza, Richard Demo</au><au>Imran, Muhammad Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backhaul Aware User-Specific Cell Association Using Q-Learning</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2019-07</date><risdate>2019</risdate><volume>18</volume><issue>7</issue><spage>3528</spage><epage>3541</epage><pages>3528-3541</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>With the advent of network densification and the development of other radio interface technologies, the major bottleneck of future cellular networks is shifting from the radio access network to the backhaul. The future networks are expected to handle a wide range of applications and users with different requirements. In order to tackle the problem of downlink user-cell association, and allocate users to the best cell, an intelligent solution based on reinforcement learning is proposed. A distributed solution based on Q-Learning is developed in order to determine the best cell range extension offsets (CREOs) for each small cell (SC) and the best weights of each user requirement to efficiently allocate users to the most appropriate SC, based on both backhaul constraints and user demands. By optimizing both CREOs and user weights, a user-specific allocation can be achieved, resulting in a better overall quality of service. The results show that the proposed algorithm outperforms current solutions by achieving better user satisfaction, mitigating the total number of users in outage, and minimizing user dissatisfaction when satisfaction is not possible.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2019.2915083</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0908-3207</orcidid><orcidid>https://orcid.org/0000-0002-7389-6245</orcidid><orcidid>https://orcid.org/0000-0002-0712-9160</orcidid><orcidid>https://orcid.org/0000-0003-4743-9136</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2019-07, Vol.18 (7), p.3528-3541
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2019_2915083
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
Algorithms
backhaul
cell association
Cellular communication
Cellular networks
Densification
Heterogeneous networks
Machine learning
Offsets
Optimization
Q-learning
Quality of service
reinforcement learning
Resource management
Self organizing networks
Throughput
User requirements
User satisfaction
title Backhaul Aware User-Specific Cell Association Using Q-Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A41%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backhaul%20Aware%20User-Specific%20Cell%20Association%20Using%20Q-Learning&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Valente%20Klaine,%20Paulo&rft.date=2019-07&rft.volume=18&rft.issue=7&rft.spage=3528&rft.epage=3541&rft.pages=3528-3541&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2019.2915083&rft_dat=%3Cproquest_cross%3E2255858755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2255858755&rft_id=info:pmid/&rft_ieee_id=8714042&rfr_iscdi=true