Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels

In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2018-05, Vol.17 (5), p.2893-2905
Hauptverfasser: Lopez, Carlos F., Cheng-Xiang Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2905
container_issue 5
container_start_page 2893
container_title IEEE transactions on wireless communications
container_volume 17
creator Lopez, Carlos F.
Cheng-Xiang Wang
description In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is proposed to efficiently model near-field effects. Second, environment evolution effects are modeled by spatial-temporal cluster (re)appearance and shadowing processes. We propose (re)appearance processes to model the visibility of clusters with enhanced spatial-temporal consistency. Shadowing processes are used to capture smooth spatial-temporal variations of the clusters' average power. In addition, a corresponding simulation model is derived along with a 3-D extension of the Riemann sum method for parameters computation. Key statistical properties of the proposed model, e.g., the spatial-temporal cross-correlation function, are derived and analyzed. Finally, we present numerical and simulation results showing an excellent agreement between the theoretical and simulation models and validating the proposed parameter computation method. The accuracy and flexibility of the proposed simulation model are demonstrated by comparing simulation results and measurements of the delay spread, slope of cluster power variations, and visibility regions' size.
doi_str_mv 10.1109/TWC.2018.2804385
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2018_2804385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8290972</ieee_id><sourcerecordid>2037343808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-90b5c1f6bf9732a873d2d4c3e76a2e7adac6ad86dbf050ea03125f12d7bdf213</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvAc-pk0myyR12_Ct32YKHHkN0kuKVu6mYt-N-7pcXTPJj3Zng_Qm45TDiH_GG1LiYIXE9Qw1RoeUZGXErNEKf6_KBFxjiq7JJcpbQB4CqTckSeFnHvt1SwZ7qILfvobd_E1na_dN04X9nW0TI6v000xI6WNqVm72k5K5e0-LRtO2yuyUWw2-RvTnNMVq8vq-KdzZdvs-JxzmrMec9yqGTNQ1aFXAm0WgmHbloLrzKLXlln68w6nbkqgARvQXCUgaNTlQvIxZjcH8_uuvj941NvNvGna4ePBkEoMZQGPbjg6Kq7mFLng9l1zdfQx3AwB1BmAGUOoMwJ1BC5O0Ya7_2_XWMOuULxBy3VYqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037343808</pqid></control><display><type>article</type><title>Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez, Carlos F. ; Cheng-Xiang Wang</creator><creatorcontrib>Lopez, Carlos F. ; Cheng-Xiang Wang</creatorcontrib><description>In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is proposed to efficiently model near-field effects. Second, environment evolution effects are modeled by spatial-temporal cluster (re)appearance and shadowing processes. We propose (re)appearance processes to model the visibility of clusters with enhanced spatial-temporal consistency. Shadowing processes are used to capture smooth spatial-temporal variations of the clusters' average power. In addition, a corresponding simulation model is derived along with a 3-D extension of the Riemann sum method for parameters computation. Key statistical properties of the proposed model, e.g., the spatial-temporal cross-correlation function, are derived and analyzed. Finally, we present numerical and simulation results showing an excellent agreement between the theoretical and simulation models and validating the proposed parameter computation method. The accuracy and flexibility of the proposed simulation model are demonstrated by comparing simulation results and measurements of the delay spread, slope of cluster power variations, and visibility regions' size.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2018.2804385</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D non-stationary channel model ; Antenna arrays ; Azimuth ; Broadband ; Channel models ; cluster reapperance ; Clusters ; Computation ; Computational modeling ; Computer simulation ; Correlation analysis ; Massive MIMO ; MIMO communication ; parabolic wavefront ; Parameters ; shadowing of clusters ; Simulation ; Solid modeling ; Three dimensional models ; Three-dimensional displays ; Visibility</subject><ispartof>IEEE transactions on wireless communications, 2018-05, Vol.17 (5), p.2893-2905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-90b5c1f6bf9732a873d2d4c3e76a2e7adac6ad86dbf050ea03125f12d7bdf213</citedby><cites>FETCH-LOGICAL-c291t-90b5c1f6bf9732a873d2d4c3e76a2e7adac6ad86dbf050ea03125f12d7bdf213</cites><orcidid>0000-0002-0804-8370 ; 0000-0002-9729-9592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8290972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8290972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez, Carlos F.</creatorcontrib><creatorcontrib>Cheng-Xiang Wang</creatorcontrib><title>Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is proposed to efficiently model near-field effects. Second, environment evolution effects are modeled by spatial-temporal cluster (re)appearance and shadowing processes. We propose (re)appearance processes to model the visibility of clusters with enhanced spatial-temporal consistency. Shadowing processes are used to capture smooth spatial-temporal variations of the clusters' average power. In addition, a corresponding simulation model is derived along with a 3-D extension of the Riemann sum method for parameters computation. Key statistical properties of the proposed model, e.g., the spatial-temporal cross-correlation function, are derived and analyzed. Finally, we present numerical and simulation results showing an excellent agreement between the theoretical and simulation models and validating the proposed parameter computation method. The accuracy and flexibility of the proposed simulation model are demonstrated by comparing simulation results and measurements of the delay spread, slope of cluster power variations, and visibility regions' size.</description><subject>3D non-stationary channel model</subject><subject>Antenna arrays</subject><subject>Azimuth</subject><subject>Broadband</subject><subject>Channel models</subject><subject>cluster reapperance</subject><subject>Clusters</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Massive MIMO</subject><subject>MIMO communication</subject><subject>parabolic wavefront</subject><subject>Parameters</subject><subject>shadowing of clusters</subject><subject>Simulation</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Visibility</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvAc-pk0myyR12_Ct32YKHHkN0kuKVu6mYt-N-7pcXTPJj3Zng_Qm45TDiH_GG1LiYIXE9Qw1RoeUZGXErNEKf6_KBFxjiq7JJcpbQB4CqTckSeFnHvt1SwZ7qILfvobd_E1na_dN04X9nW0TI6v000xI6WNqVm72k5K5e0-LRtO2yuyUWw2-RvTnNMVq8vq-KdzZdvs-JxzmrMec9yqGTNQ1aFXAm0WgmHbloLrzKLXlln68w6nbkqgARvQXCUgaNTlQvIxZjcH8_uuvj941NvNvGna4ePBkEoMZQGPbjg6Kq7mFLng9l1zdfQx3AwB1BmAGUOoMwJ1BC5O0Ya7_2_XWMOuULxBy3VYqo</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Lopez, Carlos F.</creator><creator>Cheng-Xiang Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0804-8370</orcidid><orcidid>https://orcid.org/0000-0002-9729-9592</orcidid></search><sort><creationdate>201805</creationdate><title>Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels</title><author>Lopez, Carlos F. ; Cheng-Xiang Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-90b5c1f6bf9732a873d2d4c3e76a2e7adac6ad86dbf050ea03125f12d7bdf213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D non-stationary channel model</topic><topic>Antenna arrays</topic><topic>Azimuth</topic><topic>Broadband</topic><topic>Channel models</topic><topic>cluster reapperance</topic><topic>Clusters</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Massive MIMO</topic><topic>MIMO communication</topic><topic>parabolic wavefront</topic><topic>Parameters</topic><topic>shadowing of clusters</topic><topic>Simulation</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Carlos F.</creatorcontrib><creatorcontrib>Cheng-Xiang Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez, Carlos F.</au><au>Cheng-Xiang Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2018-05</date><risdate>2018</risdate><volume>17</volume><issue>5</issue><spage>2893</spage><epage>2905</epage><pages>2893-2905</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is proposed to efficiently model near-field effects. Second, environment evolution effects are modeled by spatial-temporal cluster (re)appearance and shadowing processes. We propose (re)appearance processes to model the visibility of clusters with enhanced spatial-temporal consistency. Shadowing processes are used to capture smooth spatial-temporal variations of the clusters' average power. In addition, a corresponding simulation model is derived along with a 3-D extension of the Riemann sum method for parameters computation. Key statistical properties of the proposed model, e.g., the spatial-temporal cross-correlation function, are derived and analyzed. Finally, we present numerical and simulation results showing an excellent agreement between the theoretical and simulation models and validating the proposed parameter computation method. The accuracy and flexibility of the proposed simulation model are demonstrated by comparing simulation results and measurements of the delay spread, slope of cluster power variations, and visibility regions' size.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2018.2804385</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0804-8370</orcidid><orcidid>https://orcid.org/0000-0002-9729-9592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2018-05, Vol.17 (5), p.2893-2905
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2018_2804385
source IEEE Electronic Library (IEL)
subjects 3D non-stationary channel model
Antenna arrays
Azimuth
Broadband
Channel models
cluster reapperance
Clusters
Computation
Computational modeling
Computer simulation
Correlation analysis
Massive MIMO
MIMO communication
parabolic wavefront
Parameters
shadowing of clusters
Simulation
Solid modeling
Three dimensional models
Three-dimensional displays
Visibility
title Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%203-D%20Non-Stationary%20Wideband%20Models%20for%20Massive%20MIMO%20Channels&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Lopez,%20Carlos%20F.&rft.date=2018-05&rft.volume=17&rft.issue=5&rft.spage=2893&rft.epage=2905&rft.pages=2893-2905&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2018.2804385&rft_dat=%3Cproquest_RIE%3E2037343808%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037343808&rft_id=info:pmid/&rft_ieee_id=8290972&rfr_iscdi=true