Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels
In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on wireless communications 2018-05, Vol.17 (5), p.2893-2905 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2905 |
---|---|
container_issue | 5 |
container_start_page | 2893 |
container_title | IEEE transactions on wireless communications |
container_volume | 17 |
creator | Lopez, Carlos F. Cheng-Xiang Wang |
description | In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is proposed to efficiently model near-field effects. Second, environment evolution effects are modeled by spatial-temporal cluster (re)appearance and shadowing processes. We propose (re)appearance processes to model the visibility of clusters with enhanced spatial-temporal consistency. Shadowing processes are used to capture smooth spatial-temporal variations of the clusters' average power. In addition, a corresponding simulation model is derived along with a 3-D extension of the Riemann sum method for parameters computation. Key statistical properties of the proposed model, e.g., the spatial-temporal cross-correlation function, are derived and analyzed. Finally, we present numerical and simulation results showing an excellent agreement between the theoretical and simulation models and validating the proposed parameter computation method. The accuracy and flexibility of the proposed simulation model are demonstrated by comparing simulation results and measurements of the delay spread, slope of cluster power variations, and visibility regions' size. |
doi_str_mv | 10.1109/TWC.2018.2804385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2018_2804385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8290972</ieee_id><sourcerecordid>2037343808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-90b5c1f6bf9732a873d2d4c3e76a2e7adac6ad86dbf050ea03125f12d7bdf213</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvAc-pk0myyR12_Ct32YKHHkN0kuKVu6mYt-N-7pcXTPJj3Zng_Qm45TDiH_GG1LiYIXE9Qw1RoeUZGXErNEKf6_KBFxjiq7JJcpbQB4CqTckSeFnHvt1SwZ7qILfvobd_E1na_dN04X9nW0TI6v000xI6WNqVm72k5K5e0-LRtO2yuyUWw2-RvTnNMVq8vq-KdzZdvs-JxzmrMec9yqGTNQ1aFXAm0WgmHbloLrzKLXlln68w6nbkqgARvQXCUgaNTlQvIxZjcH8_uuvj941NvNvGna4ePBkEoMZQGPbjg6Kq7mFLng9l1zdfQx3AwB1BmAGUOoMwJ1BC5O0Ya7_2_XWMOuULxBy3VYqo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037343808</pqid></control><display><type>article</type><title>Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels</title><source>IEEE Electronic Library (IEL)</source><creator>Lopez, Carlos F. ; Cheng-Xiang Wang</creator><creatorcontrib>Lopez, Carlos F. ; Cheng-Xiang Wang</creatorcontrib><description>In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is proposed to efficiently model near-field effects. Second, environment evolution effects are modeled by spatial-temporal cluster (re)appearance and shadowing processes. We propose (re)appearance processes to model the visibility of clusters with enhanced spatial-temporal consistency. Shadowing processes are used to capture smooth spatial-temporal variations of the clusters' average power. In addition, a corresponding simulation model is derived along with a 3-D extension of the Riemann sum method for parameters computation. Key statistical properties of the proposed model, e.g., the spatial-temporal cross-correlation function, are derived and analyzed. Finally, we present numerical and simulation results showing an excellent agreement between the theoretical and simulation models and validating the proposed parameter computation method. The accuracy and flexibility of the proposed simulation model are demonstrated by comparing simulation results and measurements of the delay spread, slope of cluster power variations, and visibility regions' size.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2018.2804385</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D non-stationary channel model ; Antenna arrays ; Azimuth ; Broadband ; Channel models ; cluster reapperance ; Clusters ; Computation ; Computational modeling ; Computer simulation ; Correlation analysis ; Massive MIMO ; MIMO communication ; parabolic wavefront ; Parameters ; shadowing of clusters ; Simulation ; Solid modeling ; Three dimensional models ; Three-dimensional displays ; Visibility</subject><ispartof>IEEE transactions on wireless communications, 2018-05, Vol.17 (5), p.2893-2905</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-90b5c1f6bf9732a873d2d4c3e76a2e7adac6ad86dbf050ea03125f12d7bdf213</citedby><cites>FETCH-LOGICAL-c291t-90b5c1f6bf9732a873d2d4c3e76a2e7adac6ad86dbf050ea03125f12d7bdf213</cites><orcidid>0000-0002-0804-8370 ; 0000-0002-9729-9592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8290972$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8290972$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lopez, Carlos F.</creatorcontrib><creatorcontrib>Cheng-Xiang Wang</creatorcontrib><title>Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is proposed to efficiently model near-field effects. Second, environment evolution effects are modeled by spatial-temporal cluster (re)appearance and shadowing processes. We propose (re)appearance processes to model the visibility of clusters with enhanced spatial-temporal consistency. Shadowing processes are used to capture smooth spatial-temporal variations of the clusters' average power. In addition, a corresponding simulation model is derived along with a 3-D extension of the Riemann sum method for parameters computation. Key statistical properties of the proposed model, e.g., the spatial-temporal cross-correlation function, are derived and analyzed. Finally, we present numerical and simulation results showing an excellent agreement between the theoretical and simulation models and validating the proposed parameter computation method. The accuracy and flexibility of the proposed simulation model are demonstrated by comparing simulation results and measurements of the delay spread, slope of cluster power variations, and visibility regions' size.</description><subject>3D non-stationary channel model</subject><subject>Antenna arrays</subject><subject>Azimuth</subject><subject>Broadband</subject><subject>Channel models</subject><subject>cluster reapperance</subject><subject>Clusters</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Correlation analysis</subject><subject>Massive MIMO</subject><subject>MIMO communication</subject><subject>parabolic wavefront</subject><subject>Parameters</subject><subject>shadowing of clusters</subject><subject>Simulation</subject><subject>Solid modeling</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>Visibility</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvAc-pk0myyR12_Ct32YKHHkN0kuKVu6mYt-N-7pcXTPJj3Zng_Qm45TDiH_GG1LiYIXE9Qw1RoeUZGXErNEKf6_KBFxjiq7JJcpbQB4CqTckSeFnHvt1SwZ7qILfvobd_E1na_dN04X9nW0TI6v000xI6WNqVm72k5K5e0-LRtO2yuyUWw2-RvTnNMVq8vq-KdzZdvs-JxzmrMec9yqGTNQ1aFXAm0WgmHbloLrzKLXlln68w6nbkqgARvQXCUgaNTlQvIxZjcH8_uuvj941NvNvGna4ePBkEoMZQGPbjg6Kq7mFLng9l1zdfQx3AwB1BmAGUOoMwJ1BC5O0Ya7_2_XWMOuULxBy3VYqo</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Lopez, Carlos F.</creator><creator>Cheng-Xiang Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0804-8370</orcidid><orcidid>https://orcid.org/0000-0002-9729-9592</orcidid></search><sort><creationdate>201805</creationdate><title>Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels</title><author>Lopez, Carlos F. ; Cheng-Xiang Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-90b5c1f6bf9732a873d2d4c3e76a2e7adac6ad86dbf050ea03125f12d7bdf213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D non-stationary channel model</topic><topic>Antenna arrays</topic><topic>Azimuth</topic><topic>Broadband</topic><topic>Channel models</topic><topic>cluster reapperance</topic><topic>Clusters</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Correlation analysis</topic><topic>Massive MIMO</topic><topic>MIMO communication</topic><topic>parabolic wavefront</topic><topic>Parameters</topic><topic>shadowing of clusters</topic><topic>Simulation</topic><topic>Solid modeling</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez, Carlos F.</creatorcontrib><creatorcontrib>Cheng-Xiang Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lopez, Carlos F.</au><au>Cheng-Xiang Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2018-05</date><risdate>2018</risdate><volume>17</volume><issue>5</issue><spage>2893</spage><epage>2905</epage><pages>2893-2905</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>In this paper, a novel 3-D non-stationary wideband geometry-based stochastic theoretical channel model for massive multiple-input multiple-output communication systems is proposed. First, a second-order approximation to the spherical wavefront in space and time domains, i.e., parabolic wavefront, is proposed to efficiently model near-field effects. Second, environment evolution effects are modeled by spatial-temporal cluster (re)appearance and shadowing processes. We propose (re)appearance processes to model the visibility of clusters with enhanced spatial-temporal consistency. Shadowing processes are used to capture smooth spatial-temporal variations of the clusters' average power. In addition, a corresponding simulation model is derived along with a 3-D extension of the Riemann sum method for parameters computation. Key statistical properties of the proposed model, e.g., the spatial-temporal cross-correlation function, are derived and analyzed. Finally, we present numerical and simulation results showing an excellent agreement between the theoretical and simulation models and validating the proposed parameter computation method. The accuracy and flexibility of the proposed simulation model are demonstrated by comparing simulation results and measurements of the delay spread, slope of cluster power variations, and visibility regions' size.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2018.2804385</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0804-8370</orcidid><orcidid>https://orcid.org/0000-0002-9729-9592</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1276 |
ispartof | IEEE transactions on wireless communications, 2018-05, Vol.17 (5), p.2893-2905 |
issn | 1536-1276 1558-2248 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TWC_2018_2804385 |
source | IEEE Electronic Library (IEL) |
subjects | 3D non-stationary channel model Antenna arrays Azimuth Broadband Channel models cluster reapperance Clusters Computation Computational modeling Computer simulation Correlation analysis Massive MIMO MIMO communication parabolic wavefront Parameters shadowing of clusters Simulation Solid modeling Three dimensional models Three-dimensional displays Visibility |
title | Novel 3-D Non-Stationary Wideband Models for Massive MIMO Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%203-D%20Non-Stationary%20Wideband%20Models%20for%20Massive%20MIMO%20Channels&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Lopez,%20Carlos%20F.&rft.date=2018-05&rft.volume=17&rft.issue=5&rft.spage=2893&rft.epage=2905&rft.pages=2893-2905&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2018.2804385&rft_dat=%3Cproquest_RIE%3E2037343808%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037343808&rft_id=info:pmid/&rft_ieee_id=8290972&rfr_iscdi=true |