Line-of-Sight Millimeter-Wave Communications Using Orbital Angular Momentum Multiplexing Combined With Conventional Spatial Multiplexing

Line-of-sight wireless communications can benefit from the simultaneous transmission of multiple independent data streams through the same medium in order to increase system capacity. A common approach is to use conventional spatial multiplexing with spatially separated transmitter/receiver antennae...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2017-05, Vol.16 (5), p.3151-3161
Hauptverfasser: Yongxiong Ren, Long Li, Guodong Xie, Yan Yan, Yinwen Cao, Hao Huang, Ahmed, Nisar, Zhe Zhao, Peicheng Liao, Chongfu Zhang, Caire, Giuseppe, Molisch, Andreas F., Tur, Moshe, Willner, Alan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3161
container_issue 5
container_start_page 3151
container_title IEEE transactions on wireless communications
container_volume 16
creator Yongxiong Ren
Long Li
Guodong Xie
Yan Yan
Yinwen Cao
Hao Huang
Ahmed, Nisar
Zhe Zhao
Peicheng Liao
Chongfu Zhang
Caire, Giuseppe
Molisch, Andreas F.
Tur, Moshe
Willner, Alan E.
description Line-of-sight wireless communications can benefit from the simultaneous transmission of multiple independent data streams through the same medium in order to increase system capacity. A common approach is to use conventional spatial multiplexing with spatially separated transmitter/receiver antennae, for which inter-channel crosstalk is reduced by employing multiple-input-multiple-output (MIMO) signal processing at the receivers. Another fairly recent approach to transmitting multiple data streams is to use orbital-angular-momentum (OAM) multiplexing, which employs the orthogonality among OAM beams to minimize inter-channel crosstalk and enable efficient (de)multiplexing. In this paper, we explore the potential of utilizing both of these multiplexing techniques to provide system design flexibility and performance enhancement. We demonstrate a 16 Gbit/s millimeter-wave link using OAM multiplexing combined with conventional spatial multiplexing over a short link distance of 1.8 meters (shorter than Rayleigh distance). Specifically, we implement a spatial multiplexing system with a 2 × 2 antenna aperture architecture, in which each transmitter aperture contains two multiplexed 4 Gbit/s data-carrying OAM beams. A MIMO-based signal processing is used at the receiver to mitigate channel interference. Our experimental results show performance improvements for all channels after MIMO processing, with bit-error rates of each channel below the forward error correction limit of 3.8 × 10 -3 . We also simulate the capacity for both the 4 × 4 MIMO system and the 2 × 2 MIMO with OAM multiplexing. Our work indicates that OAM multiplexing and conventional spatial multiplexing can be simultaneously utilized to provide design flexibility. The combination of these two approaches can potentially enhance system capacity given a fixed aperture area of the transmitter/receiver (when the link distance is within a few Rayleigh distances).
doi_str_mv 10.1109/TWC.2017.2675885
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TWC_2017_2675885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7880700</ieee_id><sourcerecordid>10_1109_TWC_2017_2675885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-969cd6730a55916b9aebfd467cfe2d30abb486eee615614f4c3d7bea19d48a823</originalsourceid><addsrcrecordid>eNpNkLtqwzAYRkVpoWnavdBFL6BUkq2Lx2B6g4QMSchoZFtOVGQ5WHJo36CPXZmE0um_cL4zfAA8EjwjBGfPm10-o5iIGeWCScmuwIQwJhGlqbwe94QjQgW_BXfef-JIcsYm4GdhnEZdg9Zmfwhwaaw1rQ66Rzt10jDv2nZwplLBdM7DrTduD1d9aYKycO72g1U9XHatdmFo4XKwwRyt_hqpGC2ju4Y7Ew7xcqcIRUsMro_RF-d__h7cNMp6_XCZU7B9fdnk72ixevvI5wtUJYwGlPGsqrlIsGIsI7zMlC6bOuWiajSt47ssU8m11pwwTtImrZJalFqRrE6lkjSZAnz2Vn3nfa-b4tibVvXfBcHF2GQRmyzGJotLkzHydI6Y6P3DhZRYYJz8AvqHc4s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Line-of-Sight Millimeter-Wave Communications Using Orbital Angular Momentum Multiplexing Combined With Conventional Spatial Multiplexing</title><source>IEEE Electronic Library (IEL)</source><creator>Yongxiong Ren ; Long Li ; Guodong Xie ; Yan Yan ; Yinwen Cao ; Hao Huang ; Ahmed, Nisar ; Zhe Zhao ; Peicheng Liao ; Chongfu Zhang ; Caire, Giuseppe ; Molisch, Andreas F. ; Tur, Moshe ; Willner, Alan E.</creator><creatorcontrib>Yongxiong Ren ; Long Li ; Guodong Xie ; Yan Yan ; Yinwen Cao ; Hao Huang ; Ahmed, Nisar ; Zhe Zhao ; Peicheng Liao ; Chongfu Zhang ; Caire, Giuseppe ; Molisch, Andreas F. ; Tur, Moshe ; Willner, Alan E.</creatorcontrib><description>Line-of-sight wireless communications can benefit from the simultaneous transmission of multiple independent data streams through the same medium in order to increase system capacity. A common approach is to use conventional spatial multiplexing with spatially separated transmitter/receiver antennae, for which inter-channel crosstalk is reduced by employing multiple-input-multiple-output (MIMO) signal processing at the receivers. Another fairly recent approach to transmitting multiple data streams is to use orbital-angular-momentum (OAM) multiplexing, which employs the orthogonality among OAM beams to minimize inter-channel crosstalk and enable efficient (de)multiplexing. In this paper, we explore the potential of utilizing both of these multiplexing techniques to provide system design flexibility and performance enhancement. We demonstrate a 16 Gbit/s millimeter-wave link using OAM multiplexing combined with conventional spatial multiplexing over a short link distance of 1.8 meters (shorter than Rayleigh distance). Specifically, we implement a spatial multiplexing system with a 2 × 2 antenna aperture architecture, in which each transmitter aperture contains two multiplexed 4 Gbit/s data-carrying OAM beams. A MIMO-based signal processing is used at the receiver to mitigate channel interference. Our experimental results show performance improvements for all channels after MIMO processing, with bit-error rates of each channel below the forward error correction limit of 3.8 × 10 -3 . We also simulate the capacity for both the 4 × 4 MIMO system and the 2 × 2 MIMO with OAM multiplexing. Our work indicates that OAM multiplexing and conventional spatial multiplexing can be simultaneously utilized to provide design flexibility. The combination of these two approaches can potentially enhance system capacity given a fixed aperture area of the transmitter/receiver (when the link distance is within a few Rayleigh distances).</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2017.2675885</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aperture antennas ; Millimeter-wave communications ; MIMO ; multiple-input multiple output system ; Multiplexing ; orbital angular momentum ; Receivers ; spatial multiplexing ; Transmitters ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2017-05, Vol.16 (5), p.3151-3161</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-969cd6730a55916b9aebfd467cfe2d30abb486eee615614f4c3d7bea19d48a823</citedby><cites>FETCH-LOGICAL-c352t-969cd6730a55916b9aebfd467cfe2d30abb486eee615614f4c3d7bea19d48a823</cites><orcidid>0000-0002-8291-883X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7880700$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7880700$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yongxiong Ren</creatorcontrib><creatorcontrib>Long Li</creatorcontrib><creatorcontrib>Guodong Xie</creatorcontrib><creatorcontrib>Yan Yan</creatorcontrib><creatorcontrib>Yinwen Cao</creatorcontrib><creatorcontrib>Hao Huang</creatorcontrib><creatorcontrib>Ahmed, Nisar</creatorcontrib><creatorcontrib>Zhe Zhao</creatorcontrib><creatorcontrib>Peicheng Liao</creatorcontrib><creatorcontrib>Chongfu Zhang</creatorcontrib><creatorcontrib>Caire, Giuseppe</creatorcontrib><creatorcontrib>Molisch, Andreas F.</creatorcontrib><creatorcontrib>Tur, Moshe</creatorcontrib><creatorcontrib>Willner, Alan E.</creatorcontrib><title>Line-of-Sight Millimeter-Wave Communications Using Orbital Angular Momentum Multiplexing Combined With Conventional Spatial Multiplexing</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>Line-of-sight wireless communications can benefit from the simultaneous transmission of multiple independent data streams through the same medium in order to increase system capacity. A common approach is to use conventional spatial multiplexing with spatially separated transmitter/receiver antennae, for which inter-channel crosstalk is reduced by employing multiple-input-multiple-output (MIMO) signal processing at the receivers. Another fairly recent approach to transmitting multiple data streams is to use orbital-angular-momentum (OAM) multiplexing, which employs the orthogonality among OAM beams to minimize inter-channel crosstalk and enable efficient (de)multiplexing. In this paper, we explore the potential of utilizing both of these multiplexing techniques to provide system design flexibility and performance enhancement. We demonstrate a 16 Gbit/s millimeter-wave link using OAM multiplexing combined with conventional spatial multiplexing over a short link distance of 1.8 meters (shorter than Rayleigh distance). Specifically, we implement a spatial multiplexing system with a 2 × 2 antenna aperture architecture, in which each transmitter aperture contains two multiplexed 4 Gbit/s data-carrying OAM beams. A MIMO-based signal processing is used at the receiver to mitigate channel interference. Our experimental results show performance improvements for all channels after MIMO processing, with bit-error rates of each channel below the forward error correction limit of 3.8 × 10 -3 . We also simulate the capacity for both the 4 × 4 MIMO system and the 2 × 2 MIMO with OAM multiplexing. Our work indicates that OAM multiplexing and conventional spatial multiplexing can be simultaneously utilized to provide design flexibility. The combination of these two approaches can potentially enhance system capacity given a fixed aperture area of the transmitter/receiver (when the link distance is within a few Rayleigh distances).</description><subject>Aperture antennas</subject><subject>Millimeter-wave communications</subject><subject>MIMO</subject><subject>multiple-input multiple output system</subject><subject>Multiplexing</subject><subject>orbital angular momentum</subject><subject>Receivers</subject><subject>spatial multiplexing</subject><subject>Transmitters</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkLtqwzAYRkVpoWnavdBFL6BUkq2Lx2B6g4QMSchoZFtOVGQ5WHJo36CPXZmE0um_cL4zfAA8EjwjBGfPm10-o5iIGeWCScmuwIQwJhGlqbwe94QjQgW_BXfef-JIcsYm4GdhnEZdg9Zmfwhwaaw1rQ66Rzt10jDv2nZwplLBdM7DrTduD1d9aYKycO72g1U9XHatdmFo4XKwwRyt_hqpGC2ju4Y7Ew7xcqcIRUsMro_RF-d__h7cNMp6_XCZU7B9fdnk72ixevvI5wtUJYwGlPGsqrlIsGIsI7zMlC6bOuWiajSt47ssU8m11pwwTtImrZJalFqRrE6lkjSZAnz2Vn3nfa-b4tibVvXfBcHF2GQRmyzGJotLkzHydI6Y6P3DhZRYYJz8AvqHc4s</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Yongxiong Ren</creator><creator>Long Li</creator><creator>Guodong Xie</creator><creator>Yan Yan</creator><creator>Yinwen Cao</creator><creator>Hao Huang</creator><creator>Ahmed, Nisar</creator><creator>Zhe Zhao</creator><creator>Peicheng Liao</creator><creator>Chongfu Zhang</creator><creator>Caire, Giuseppe</creator><creator>Molisch, Andreas F.</creator><creator>Tur, Moshe</creator><creator>Willner, Alan E.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8291-883X</orcidid></search><sort><creationdate>201705</creationdate><title>Line-of-Sight Millimeter-Wave Communications Using Orbital Angular Momentum Multiplexing Combined With Conventional Spatial Multiplexing</title><author>Yongxiong Ren ; Long Li ; Guodong Xie ; Yan Yan ; Yinwen Cao ; Hao Huang ; Ahmed, Nisar ; Zhe Zhao ; Peicheng Liao ; Chongfu Zhang ; Caire, Giuseppe ; Molisch, Andreas F. ; Tur, Moshe ; Willner, Alan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-969cd6730a55916b9aebfd467cfe2d30abb486eee615614f4c3d7bea19d48a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aperture antennas</topic><topic>Millimeter-wave communications</topic><topic>MIMO</topic><topic>multiple-input multiple output system</topic><topic>Multiplexing</topic><topic>orbital angular momentum</topic><topic>Receivers</topic><topic>spatial multiplexing</topic><topic>Transmitters</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yongxiong Ren</creatorcontrib><creatorcontrib>Long Li</creatorcontrib><creatorcontrib>Guodong Xie</creatorcontrib><creatorcontrib>Yan Yan</creatorcontrib><creatorcontrib>Yinwen Cao</creatorcontrib><creatorcontrib>Hao Huang</creatorcontrib><creatorcontrib>Ahmed, Nisar</creatorcontrib><creatorcontrib>Zhe Zhao</creatorcontrib><creatorcontrib>Peicheng Liao</creatorcontrib><creatorcontrib>Chongfu Zhang</creatorcontrib><creatorcontrib>Caire, Giuseppe</creatorcontrib><creatorcontrib>Molisch, Andreas F.</creatorcontrib><creatorcontrib>Tur, Moshe</creatorcontrib><creatorcontrib>Willner, Alan E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yongxiong Ren</au><au>Long Li</au><au>Guodong Xie</au><au>Yan Yan</au><au>Yinwen Cao</au><au>Hao Huang</au><au>Ahmed, Nisar</au><au>Zhe Zhao</au><au>Peicheng Liao</au><au>Chongfu Zhang</au><au>Caire, Giuseppe</au><au>Molisch, Andreas F.</au><au>Tur, Moshe</au><au>Willner, Alan E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Line-of-Sight Millimeter-Wave Communications Using Orbital Angular Momentum Multiplexing Combined With Conventional Spatial Multiplexing</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2017-05</date><risdate>2017</risdate><volume>16</volume><issue>5</issue><spage>3151</spage><epage>3161</epage><pages>3151-3161</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>Line-of-sight wireless communications can benefit from the simultaneous transmission of multiple independent data streams through the same medium in order to increase system capacity. A common approach is to use conventional spatial multiplexing with spatially separated transmitter/receiver antennae, for which inter-channel crosstalk is reduced by employing multiple-input-multiple-output (MIMO) signal processing at the receivers. Another fairly recent approach to transmitting multiple data streams is to use orbital-angular-momentum (OAM) multiplexing, which employs the orthogonality among OAM beams to minimize inter-channel crosstalk and enable efficient (de)multiplexing. In this paper, we explore the potential of utilizing both of these multiplexing techniques to provide system design flexibility and performance enhancement. We demonstrate a 16 Gbit/s millimeter-wave link using OAM multiplexing combined with conventional spatial multiplexing over a short link distance of 1.8 meters (shorter than Rayleigh distance). Specifically, we implement a spatial multiplexing system with a 2 × 2 antenna aperture architecture, in which each transmitter aperture contains two multiplexed 4 Gbit/s data-carrying OAM beams. A MIMO-based signal processing is used at the receiver to mitigate channel interference. Our experimental results show performance improvements for all channels after MIMO processing, with bit-error rates of each channel below the forward error correction limit of 3.8 × 10 -3 . We also simulate the capacity for both the 4 × 4 MIMO system and the 2 × 2 MIMO with OAM multiplexing. Our work indicates that OAM multiplexing and conventional spatial multiplexing can be simultaneously utilized to provide design flexibility. The combination of these two approaches can potentially enhance system capacity given a fixed aperture area of the transmitter/receiver (when the link distance is within a few Rayleigh distances).</abstract><pub>IEEE</pub><doi>10.1109/TWC.2017.2675885</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8291-883X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2017-05, Vol.16 (5), p.3151-3161
issn 1536-1276
1558-2248
language eng
recordid cdi_crossref_primary_10_1109_TWC_2017_2675885
source IEEE Electronic Library (IEL)
subjects Aperture antennas
Millimeter-wave communications
MIMO
multiple-input multiple output system
Multiplexing
orbital angular momentum
Receivers
spatial multiplexing
Transmitters
Wireless communication
title Line-of-Sight Millimeter-Wave Communications Using Orbital Angular Momentum Multiplexing Combined With Conventional Spatial Multiplexing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Line-of-Sight%20Millimeter-Wave%20Communications%20Using%20Orbital%20Angular%20Momentum%20Multiplexing%20Combined%20With%20Conventional%20Spatial%20Multiplexing&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Yongxiong%20Ren&rft.date=2017-05&rft.volume=16&rft.issue=5&rft.spage=3151&rft.epage=3161&rft.pages=3151-3161&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2017.2675885&rft_dat=%3Ccrossref_RIE%3E10_1109_TWC_2017_2675885%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7880700&rfr_iscdi=true