Energy Efficient COGnitive-MAC for Sensor Networks Under WLAN Co-existence

Energy efficiency has been the driving force behind the design of communication protocols for battery-constrained wireless sensor networks (WSNs). The energy efficiency and the performance of the proposed protocol stacks, however, degrade dramatically in case the low-powered WSNS are subject to inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2015-07, Vol.14 (7), p.4075-4089
Hauptverfasser: Glaropoulos, Ioannis, Lagana, Marcello, Fodor, Viktoria, Petrioli, Chiara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Energy efficiency has been the driving force behind the design of communication protocols for battery-constrained wireless sensor networks (WSNs). The energy efficiency and the performance of the proposed protocol stacks, however, degrade dramatically in case the low-powered WSNS are subject to interference from high-power wireless systems such as WLANs. In this paper we propose COG-MAC, a novel cognitive medium access control scheme (MAC) for IEEE 802.15.4-compliant WSNS that minimizes the energy cost for multihop communications, by deriving energy-optimal packet lengths and single-hop transmission distances based on the experienced interference from IEEE 802.11 WLANs. We evaluate COG-MAC by deriving a detailed analytic model for its performance and by comparing it with previous access control schemes. Numerical and simulation results show that a significant decrease in packet transmission energy cost, up to 66%, can be achieved in a wide range of scenarios, particularly under severe WLAN interference. COG-MAC is, also, lightweight and shows high robustness against WLAN model estimation errors and is, therefore, an effective, implementable solution to reduce the WSN performance impairment when coexisting with WLANs.
ISSN:1536-1276
1558-2248
1558-2248
DOI:10.1109/TWC.2015.2416336