A Novel TriNet Architecture for Enhanced Analog IC Design Automation

Analog integrated circuit (IC) design and its automation pose significant challenges due to the time-consuming mathematical computations and complexity of circuit design. Though efforts have been made to automate the analog design flow, the current approach falls short in meeting the exact design re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2024-11, Vol.32 (11), p.2046-2059
Hauptverfasser: Chavan, Arunkumar P, Vaidya, Shrish Shrinath, Mantrashetti, Sanket M., Dastikopp, Abhishek Gurunath, Murthy, Kishan S., Aradhya, H. V. Ravish, Pawar, Prakash
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2059
container_issue 11
container_start_page 2046
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 32
creator Chavan, Arunkumar P
Vaidya, Shrish Shrinath
Mantrashetti, Sanket M.
Dastikopp, Abhishek Gurunath
Murthy, Kishan S.
Aradhya, H. V. Ravish
Pawar, Prakash
description Analog integrated circuit (IC) design and its automation pose significant challenges due to the time-consuming mathematical computations and complexity of circuit design. Though efforts have been made to automate the analog design flow, the current approach falls short in meeting the exact design requirements and plagued by inaccuracies, highlighting the necessity for a more robust approach capable of accurately predicting circuits. In addition, there is a need for an improved dataset collection technique to enhance the overall performance of the automation process. The power management unit (PMU) is a crucial block in any IC that requires the design of low-dropout regulator (LDO) for which amplifiers are fundamental blocks. This research harnesses the capabilities of deep neural networks (DNNs) to automate essential amplifier blocks, such as the differential amplifier (DiffAmp) and two-stage operational amplifier (OpAmp). In addition, it proposes an automation framework for the higher level circuitry of the LDO. This article introduces a novel "TriNet" architecture designed for various parameters of amplifiers, including gain, bandwidth, and power facilitating precise predictions for DiffAmp and OpAmp, and presents a decoder architecture tailored for LDO. A notable aspect is the development of an efficient technique for acquiring larger datasets in a condensed timeframe. The presented methodologies demonstrate high accuracy rates, achieving 97.3% for DiffAmp and OpAmp circuits and 94.3% for LDO design.
doi_str_mv 10.1109/TVLSI.2024.3452032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2024_3452032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10672521</ieee_id><sourcerecordid>3120655849</sourcerecordid><originalsourceid>FETCH-LOGICAL-c177t-a0c11839041a6bc9cc2af9df26fb331e9eeb856f346fe59c3ec46ceecadaa5c03</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhhujiYj-AeOhiefFfu_2uAFUkg0eRK9NKVNYAltsd0389y7Cwbm8c3ifyeRB6J6SEaVEPy0-q_fZiBEmRlxIRji7QAMqZZ7pfi77nSieFYySa3ST0pYQKoQmAzQp8Tx8ww4vYj2HFpfRbeoWXNtFwD5EPG02tnGwwmVjd2GNZ2M8gVSvG1x2bdjbtg7NLbrydpfg7pxD9PE8XYxfs-rtZTYuq8zRPG8zSxylBddEUKuWTjvHrNcrz5Rfck5BAywLqTwXyoPUjoMTygE4u7JWOsKH6PF09xDDVwepNdvQxf6vZDhlRElZCN232KnlYkgpgjeHWO9t_DGUmKMt82fLHG2Zs60eejhBNQD8A1TOJKP8F0_LZjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120655849</pqid></control><display><type>article</type><title>A Novel TriNet Architecture for Enhanced Analog IC Design Automation</title><source>IEEE Electronic Library (IEL)</source><creator>Chavan, Arunkumar P ; Vaidya, Shrish Shrinath ; Mantrashetti, Sanket M. ; Dastikopp, Abhishek Gurunath ; Murthy, Kishan S. ; Aradhya, H. V. Ravish ; Pawar, Prakash</creator><creatorcontrib>Chavan, Arunkumar P ; Vaidya, Shrish Shrinath ; Mantrashetti, Sanket M. ; Dastikopp, Abhishek Gurunath ; Murthy, Kishan S. ; Aradhya, H. V. Ravish ; Pawar, Prakash</creatorcontrib><description>Analog integrated circuit (IC) design and its automation pose significant challenges due to the time-consuming mathematical computations and complexity of circuit design. Though efforts have been made to automate the analog design flow, the current approach falls short in meeting the exact design requirements and plagued by inaccuracies, highlighting the necessity for a more robust approach capable of accurately predicting circuits. In addition, there is a need for an improved dataset collection technique to enhance the overall performance of the automation process. The power management unit (PMU) is a crucial block in any IC that requires the design of low-dropout regulator (LDO) for which amplifiers are fundamental blocks. This research harnesses the capabilities of deep neural networks (DNNs) to automate essential amplifier blocks, such as the differential amplifier (DiffAmp) and two-stage operational amplifier (OpAmp). In addition, it proposes an automation framework for the higher level circuitry of the LDO. This article introduces a novel "TriNet" architecture designed for various parameters of amplifiers, including gain, bandwidth, and power facilitating precise predictions for DiffAmp and OpAmp, and presents a decoder architecture tailored for LDO. A notable aspect is the development of an efficient technique for acquiring larger datasets in a condensed timeframe. The presented methodologies demonstrate high accuracy rates, achieving 97.3% for DiffAmp and OpAmp circuits and 94.3% for LDO design.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2024.3452032</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Amplifier ; Analog circuits ; Artificial neural networks ; Automation ; Circuit design ; Complexity theory ; Data models ; Datasets ; deep neural networks (DNNs) ; Design automation ; Differential amplifiers ; Harnesses ; Integrated circuit modeling ; Integrated circuits ; low-dropout regulator (LDO) ; Operational amplifiers ; Performance prediction ; Power management ; TriNet</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2024-11, Vol.32 (11), p.2046-2059</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c177t-a0c11839041a6bc9cc2af9df26fb331e9eeb856f346fe59c3ec46ceecadaa5c03</cites><orcidid>0009-0006-5438-9500 ; 0009-0003-6452-7469 ; 0009-0005-9474-3298 ; 0000-0001-8056-8795 ; 0009-0000-3961-2029 ; 0000-0003-0023-503X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10672521$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Chavan, Arunkumar P</creatorcontrib><creatorcontrib>Vaidya, Shrish Shrinath</creatorcontrib><creatorcontrib>Mantrashetti, Sanket M.</creatorcontrib><creatorcontrib>Dastikopp, Abhishek Gurunath</creatorcontrib><creatorcontrib>Murthy, Kishan S.</creatorcontrib><creatorcontrib>Aradhya, H. V. Ravish</creatorcontrib><creatorcontrib>Pawar, Prakash</creatorcontrib><title>A Novel TriNet Architecture for Enhanced Analog IC Design Automation</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Analog integrated circuit (IC) design and its automation pose significant challenges due to the time-consuming mathematical computations and complexity of circuit design. Though efforts have been made to automate the analog design flow, the current approach falls short in meeting the exact design requirements and plagued by inaccuracies, highlighting the necessity for a more robust approach capable of accurately predicting circuits. In addition, there is a need for an improved dataset collection technique to enhance the overall performance of the automation process. The power management unit (PMU) is a crucial block in any IC that requires the design of low-dropout regulator (LDO) for which amplifiers are fundamental blocks. This research harnesses the capabilities of deep neural networks (DNNs) to automate essential amplifier blocks, such as the differential amplifier (DiffAmp) and two-stage operational amplifier (OpAmp). In addition, it proposes an automation framework for the higher level circuitry of the LDO. This article introduces a novel "TriNet" architecture designed for various parameters of amplifiers, including gain, bandwidth, and power facilitating precise predictions for DiffAmp and OpAmp, and presents a decoder architecture tailored for LDO. A notable aspect is the development of an efficient technique for acquiring larger datasets in a condensed timeframe. The presented methodologies demonstrate high accuracy rates, achieving 97.3% for DiffAmp and OpAmp circuits and 94.3% for LDO design.</description><subject>Accuracy</subject><subject>Amplifier</subject><subject>Analog circuits</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Circuit design</subject><subject>Complexity theory</subject><subject>Data models</subject><subject>Datasets</subject><subject>deep neural networks (DNNs)</subject><subject>Design automation</subject><subject>Differential amplifiers</subject><subject>Harnesses</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>low-dropout regulator (LDO)</subject><subject>Operational amplifiers</subject><subject>Performance prediction</subject><subject>Power management</subject><subject>TriNet</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhhujiYj-AeOhiefFfu_2uAFUkg0eRK9NKVNYAltsd0389y7Cwbm8c3ifyeRB6J6SEaVEPy0-q_fZiBEmRlxIRji7QAMqZZ7pfi77nSieFYySa3ST0pYQKoQmAzQp8Tx8ww4vYj2HFpfRbeoWXNtFwD5EPG02tnGwwmVjd2GNZ2M8gVSvG1x2bdjbtg7NLbrydpfg7pxD9PE8XYxfs-rtZTYuq8zRPG8zSxylBddEUKuWTjvHrNcrz5Rfck5BAywLqTwXyoPUjoMTygE4u7JWOsKH6PF09xDDVwepNdvQxf6vZDhlRElZCN232KnlYkgpgjeHWO9t_DGUmKMt82fLHG2Zs60eejhBNQD8A1TOJKP8F0_LZjQ</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Chavan, Arunkumar P</creator><creator>Vaidya, Shrish Shrinath</creator><creator>Mantrashetti, Sanket M.</creator><creator>Dastikopp, Abhishek Gurunath</creator><creator>Murthy, Kishan S.</creator><creator>Aradhya, H. V. Ravish</creator><creator>Pawar, Prakash</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-5438-9500</orcidid><orcidid>https://orcid.org/0009-0003-6452-7469</orcidid><orcidid>https://orcid.org/0009-0005-9474-3298</orcidid><orcidid>https://orcid.org/0000-0001-8056-8795</orcidid><orcidid>https://orcid.org/0009-0000-3961-2029</orcidid><orcidid>https://orcid.org/0000-0003-0023-503X</orcidid></search><sort><creationdate>20241101</creationdate><title>A Novel TriNet Architecture for Enhanced Analog IC Design Automation</title><author>Chavan, Arunkumar P ; Vaidya, Shrish Shrinath ; Mantrashetti, Sanket M. ; Dastikopp, Abhishek Gurunath ; Murthy, Kishan S. ; Aradhya, H. V. Ravish ; Pawar, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c177t-a0c11839041a6bc9cc2af9df26fb331e9eeb856f346fe59c3ec46ceecadaa5c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Amplifier</topic><topic>Analog circuits</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Circuit design</topic><topic>Complexity theory</topic><topic>Data models</topic><topic>Datasets</topic><topic>deep neural networks (DNNs)</topic><topic>Design automation</topic><topic>Differential amplifiers</topic><topic>Harnesses</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>low-dropout regulator (LDO)</topic><topic>Operational amplifiers</topic><topic>Performance prediction</topic><topic>Power management</topic><topic>TriNet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chavan, Arunkumar P</creatorcontrib><creatorcontrib>Vaidya, Shrish Shrinath</creatorcontrib><creatorcontrib>Mantrashetti, Sanket M.</creatorcontrib><creatorcontrib>Dastikopp, Abhishek Gurunath</creatorcontrib><creatorcontrib>Murthy, Kishan S.</creatorcontrib><creatorcontrib>Aradhya, H. V. Ravish</creatorcontrib><creatorcontrib>Pawar, Prakash</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chavan, Arunkumar P</au><au>Vaidya, Shrish Shrinath</au><au>Mantrashetti, Sanket M.</au><au>Dastikopp, Abhishek Gurunath</au><au>Murthy, Kishan S.</au><au>Aradhya, H. V. Ravish</au><au>Pawar, Prakash</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel TriNet Architecture for Enhanced Analog IC Design Automation</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2024-11-01</date><risdate>2024</risdate><volume>32</volume><issue>11</issue><spage>2046</spage><epage>2059</epage><pages>2046-2059</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Analog integrated circuit (IC) design and its automation pose significant challenges due to the time-consuming mathematical computations and complexity of circuit design. Though efforts have been made to automate the analog design flow, the current approach falls short in meeting the exact design requirements and plagued by inaccuracies, highlighting the necessity for a more robust approach capable of accurately predicting circuits. In addition, there is a need for an improved dataset collection technique to enhance the overall performance of the automation process. The power management unit (PMU) is a crucial block in any IC that requires the design of low-dropout regulator (LDO) for which amplifiers are fundamental blocks. This research harnesses the capabilities of deep neural networks (DNNs) to automate essential amplifier blocks, such as the differential amplifier (DiffAmp) and two-stage operational amplifier (OpAmp). In addition, it proposes an automation framework for the higher level circuitry of the LDO. This article introduces a novel "TriNet" architecture designed for various parameters of amplifiers, including gain, bandwidth, and power facilitating precise predictions for DiffAmp and OpAmp, and presents a decoder architecture tailored for LDO. A notable aspect is the development of an efficient technique for acquiring larger datasets in a condensed timeframe. The presented methodologies demonstrate high accuracy rates, achieving 97.3% for DiffAmp and OpAmp circuits and 94.3% for LDO design.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2024.3452032</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0006-5438-9500</orcidid><orcidid>https://orcid.org/0009-0003-6452-7469</orcidid><orcidid>https://orcid.org/0009-0005-9474-3298</orcidid><orcidid>https://orcid.org/0000-0001-8056-8795</orcidid><orcidid>https://orcid.org/0009-0000-3961-2029</orcidid><orcidid>https://orcid.org/0000-0003-0023-503X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2024-11, Vol.32 (11), p.2046-2059
issn 1063-8210
1557-9999
language eng
recordid cdi_crossref_primary_10_1109_TVLSI_2024_3452032
source IEEE Electronic Library (IEL)
subjects Accuracy
Amplifier
Analog circuits
Artificial neural networks
Automation
Circuit design
Complexity theory
Data models
Datasets
deep neural networks (DNNs)
Design automation
Differential amplifiers
Harnesses
Integrated circuit modeling
Integrated circuits
low-dropout regulator (LDO)
Operational amplifiers
Performance prediction
Power management
TriNet
title A Novel TriNet Architecture for Enhanced Analog IC Design Automation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A21%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20TriNet%20Architecture%20for%20Enhanced%20Analog%20IC%20Design%20Automation&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Chavan,%20Arunkumar%20P&rft.date=2024-11-01&rft.volume=32&rft.issue=11&rft.spage=2046&rft.epage=2059&rft.pages=2046-2059&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2024.3452032&rft_dat=%3Cproquest_cross%3E3120655849%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3120655849&rft_id=info:pmid/&rft_ieee_id=10672521&rfr_iscdi=true