Microarchitecture Design Space Exploration via Pareto-Driven Active Learning

Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2023-11, Vol.31 (11), p.1727-1739
Hauptverfasser: Zhai, Jianwang, Cai, Yici
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1739
container_issue 11
container_start_page 1727
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 31
creator Zhai, Jianwang
Cai, Yici
description Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we propose a microarchitecture design space exploration (DSE) approach via Pareto-driven active learning (AL). First, a more accurate dynamic tree ensemble model is used to guide the exploration and can give the importance of each design parameter. Then, a Pareto-driven AL approach is proposed that prioritizes the exploration of designs with larger hypervolume contributions in the predicted Pareto fronts and allows the acceptance of poor solutions to handle model inaccuracies. Finally, a parallel strategy is utilized to speed up the exploration. The experimental results on the 7-nm RISC-V Berkeley out-of-order machine (BOOM) show that our method can find diversified designs converging to real Pareto fronts more efficiently, achieving better exploration quality and efficiency than previous work.
doi_str_mv 10.1109/TVLSI.2023.3311620
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2023_3311620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10255715</ieee_id><sourcerecordid>2878508214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-a687d00fccb1896027d71321d76384c270b861d5db150d70feb586d5011ee4ee3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAohDJM4pu05iO8eq5adSEEgtXC3H2RRXJSlOWsHb49Ie2MvsYWZX8zF2jTBChPxu8V7MZyMOPBklCaLgcMIGmGUyzsOchh1EEiuOcM4uum4FgGmaw4AVz8761nj74Xqy_dZTNKXOLZtovjGWovvvzbr1pndtE-2ciV6Np76Np97tqInGtg8aFWR845rlJTurzbqjq6MO2dvD_WLyFBcvj7PJuIgtz0UfG6FkBVBbW6LKBXBZSUw4VlIkKrVcQqkEVllVYgaVhJrKTIkqA0SilCgZstvD3Y1vv7bU9XrVbn0TXmqupMogFE2Dix9coWDXear1xrtP4380gt5T03_U9J6aPlILoZtDyBHRvwAPLDFLfgFu8WiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878508214</pqid></control><display><type>article</type><title>Microarchitecture Design Space Exploration via Pareto-Driven Active Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhai, Jianwang ; Cai, Yici</creator><creatorcontrib>Zhai, Jianwang ; Cai, Yici</creatorcontrib><description>Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we propose a microarchitecture design space exploration (DSE) approach via Pareto-driven active learning (AL). First, a more accurate dynamic tree ensemble model is used to guide the exploration and can give the importance of each design parameter. Then, a Pareto-driven AL approach is proposed that prioritizes the exploration of designs with larger hypervolume contributions in the predicted Pareto fronts and allows the acceptance of poor solutions to handle model inaccuracies. Finally, a parallel strategy is utilized to speed up the exploration. The experimental results on the 7-nm RISC-V Berkeley out-of-order machine (BOOM) show that our method can find diversified designs converging to real Pareto fronts more efficiently, achieving better exploration quality and efficiency than previous work.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2023.3311620</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active learning ; Active learning (AL) ; Analytical models ; Computer architecture ; Design parameters ; design space exploration (DSE) ; hypervolume ; Learning ; Measurement ; Microarchitecture ; Microprocessors ; Pareto fronts ; Power consumption ; Predictive models ; Program processors ; RISC ; RISC-V Berkeley out-of-order machine (BOOM) ; Space exploration ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2023-11, Vol.31 (11), p.1727-1739</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-a687d00fccb1896027d71321d76384c270b861d5db150d70feb586d5011ee4ee3</citedby><cites>FETCH-LOGICAL-c296t-a687d00fccb1896027d71321d76384c270b861d5db150d70feb586d5011ee4ee3</cites><orcidid>0000-0002-1581-3536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10255715$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10255715$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhai, Jianwang</creatorcontrib><creatorcontrib>Cai, Yici</creatorcontrib><title>Microarchitecture Design Space Exploration via Pareto-Driven Active Learning</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we propose a microarchitecture design space exploration (DSE) approach via Pareto-driven active learning (AL). First, a more accurate dynamic tree ensemble model is used to guide the exploration and can give the importance of each design parameter. Then, a Pareto-driven AL approach is proposed that prioritizes the exploration of designs with larger hypervolume contributions in the predicted Pareto fronts and allows the acceptance of poor solutions to handle model inaccuracies. Finally, a parallel strategy is utilized to speed up the exploration. The experimental results on the 7-nm RISC-V Berkeley out-of-order machine (BOOM) show that our method can find diversified designs converging to real Pareto fronts more efficiently, achieving better exploration quality and efficiency than previous work.</description><subject>Active learning</subject><subject>Active learning (AL)</subject><subject>Analytical models</subject><subject>Computer architecture</subject><subject>Design parameters</subject><subject>design space exploration (DSE)</subject><subject>hypervolume</subject><subject>Learning</subject><subject>Measurement</subject><subject>Microarchitecture</subject><subject>Microprocessors</subject><subject>Pareto fronts</subject><subject>Power consumption</subject><subject>Predictive models</subject><subject>Program processors</subject><subject>RISC</subject><subject>RISC-V Berkeley out-of-order machine (BOOM)</subject><subject>Space exploration</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAohDJM4pu05iO8eq5adSEEgtXC3H2RRXJSlOWsHb49Ie2MvsYWZX8zF2jTBChPxu8V7MZyMOPBklCaLgcMIGmGUyzsOchh1EEiuOcM4uum4FgGmaw4AVz8761nj74Xqy_dZTNKXOLZtovjGWovvvzbr1pndtE-2ciV6Np76Np97tqInGtg8aFWR845rlJTurzbqjq6MO2dvD_WLyFBcvj7PJuIgtz0UfG6FkBVBbW6LKBXBZSUw4VlIkKrVcQqkEVllVYgaVhJrKTIkqA0SilCgZstvD3Y1vv7bU9XrVbn0TXmqupMogFE2Dix9coWDXear1xrtP4380gt5T03_U9J6aPlILoZtDyBHRvwAPLDFLfgFu8WiI</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhai, Jianwang</creator><creator>Cai, Yici</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1581-3536</orcidid></search><sort><creationdate>20231101</creationdate><title>Microarchitecture Design Space Exploration via Pareto-Driven Active Learning</title><author>Zhai, Jianwang ; Cai, Yici</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-a687d00fccb1896027d71321d76384c270b861d5db150d70feb586d5011ee4ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active learning</topic><topic>Active learning (AL)</topic><topic>Analytical models</topic><topic>Computer architecture</topic><topic>Design parameters</topic><topic>design space exploration (DSE)</topic><topic>hypervolume</topic><topic>Learning</topic><topic>Measurement</topic><topic>Microarchitecture</topic><topic>Microprocessors</topic><topic>Pareto fronts</topic><topic>Power consumption</topic><topic>Predictive models</topic><topic>Program processors</topic><topic>RISC</topic><topic>RISC-V Berkeley out-of-order machine (BOOM)</topic><topic>Space exploration</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Jianwang</creatorcontrib><creatorcontrib>Cai, Yici</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai, Jianwang</au><au>Cai, Yici</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microarchitecture Design Space Exploration via Pareto-Driven Active Learning</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>31</volume><issue>11</issue><spage>1727</spage><epage>1739</epage><pages>1727-1739</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we propose a microarchitecture design space exploration (DSE) approach via Pareto-driven active learning (AL). First, a more accurate dynamic tree ensemble model is used to guide the exploration and can give the importance of each design parameter. Then, a Pareto-driven AL approach is proposed that prioritizes the exploration of designs with larger hypervolume contributions in the predicted Pareto fronts and allows the acceptance of poor solutions to handle model inaccuracies. Finally, a parallel strategy is utilized to speed up the exploration. The experimental results on the 7-nm RISC-V Berkeley out-of-order machine (BOOM) show that our method can find diversified designs converging to real Pareto fronts more efficiently, achieving better exploration quality and efficiency than previous work.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2023.3311620</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1581-3536</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2023-11, Vol.31 (11), p.1727-1739
issn 1063-8210
1557-9999
language eng
recordid cdi_crossref_primary_10_1109_TVLSI_2023_3311620
source IEEE Electronic Library (IEL)
subjects Active learning
Active learning (AL)
Analytical models
Computer architecture
Design parameters
design space exploration (DSE)
hypervolume
Learning
Measurement
Microarchitecture
Microprocessors
Pareto fronts
Power consumption
Predictive models
Program processors
RISC
RISC-V Berkeley out-of-order machine (BOOM)
Space exploration
Very large scale integration
title Microarchitecture Design Space Exploration via Pareto-Driven Active Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microarchitecture%20Design%20Space%20Exploration%20via%20Pareto-Driven%20Active%20Learning&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Zhai,%20Jianwang&rft.date=2023-11-01&rft.volume=31&rft.issue=11&rft.spage=1727&rft.epage=1739&rft.pages=1727-1739&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2023.3311620&rft_dat=%3Cproquest_RIE%3E2878508214%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878508214&rft_id=info:pmid/&rft_ieee_id=10255715&rfr_iscdi=true