Microarchitecture Design Space Exploration via Pareto-Driven Active Learning
Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2023-11, Vol.31 (11), p.1727-1739 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1739 |
---|---|
container_issue | 11 |
container_start_page | 1727 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 31 |
creator | Zhai, Jianwang Cai, Yici |
description | Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we propose a microarchitecture design space exploration (DSE) approach via Pareto-driven active learning (AL). First, a more accurate dynamic tree ensemble model is used to guide the exploration and can give the importance of each design parameter. Then, a Pareto-driven AL approach is proposed that prioritizes the exploration of designs with larger hypervolume contributions in the predicted Pareto fronts and allows the acceptance of poor solutions to handle model inaccuracies. Finally, a parallel strategy is utilized to speed up the exploration. The experimental results on the 7-nm RISC-V Berkeley out-of-order machine (BOOM) show that our method can find diversified designs converging to real Pareto fronts more efficiently, achieving better exploration quality and efficiency than previous work. |
doi_str_mv | 10.1109/TVLSI.2023.3311620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2023_3311620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10255715</ieee_id><sourcerecordid>2878508214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-a687d00fccb1896027d71321d76384c270b861d5db150d70feb586d5011ee4ee3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwAohDJM4pu05iO8eq5adSEEgtXC3H2RRXJSlOWsHb49Ie2MvsYWZX8zF2jTBChPxu8V7MZyMOPBklCaLgcMIGmGUyzsOchh1EEiuOcM4uum4FgGmaw4AVz8761nj74Xqy_dZTNKXOLZtovjGWovvvzbr1pndtE-2ciV6Np76Np97tqInGtg8aFWR845rlJTurzbqjq6MO2dvD_WLyFBcvj7PJuIgtz0UfG6FkBVBbW6LKBXBZSUw4VlIkKrVcQqkEVllVYgaVhJrKTIkqA0SilCgZstvD3Y1vv7bU9XrVbn0TXmqupMogFE2Dix9coWDXear1xrtP4380gt5T03_U9J6aPlILoZtDyBHRvwAPLDFLfgFu8WiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878508214</pqid></control><display><type>article</type><title>Microarchitecture Design Space Exploration via Pareto-Driven Active Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Zhai, Jianwang ; Cai, Yici</creator><creatorcontrib>Zhai, Jianwang ; Cai, Yici</creatorcontrib><description>Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we propose a microarchitecture design space exploration (DSE) approach via Pareto-driven active learning (AL). First, a more accurate dynamic tree ensemble model is used to guide the exploration and can give the importance of each design parameter. Then, a Pareto-driven AL approach is proposed that prioritizes the exploration of designs with larger hypervolume contributions in the predicted Pareto fronts and allows the acceptance of poor solutions to handle model inaccuracies. Finally, a parallel strategy is utilized to speed up the exploration. The experimental results on the 7-nm RISC-V Berkeley out-of-order machine (BOOM) show that our method can find diversified designs converging to real Pareto fronts more efficiently, achieving better exploration quality and efficiency than previous work.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2023.3311620</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Active learning ; Active learning (AL) ; Analytical models ; Computer architecture ; Design parameters ; design space exploration (DSE) ; hypervolume ; Learning ; Measurement ; Microarchitecture ; Microprocessors ; Pareto fronts ; Power consumption ; Predictive models ; Program processors ; RISC ; RISC-V Berkeley out-of-order machine (BOOM) ; Space exploration ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2023-11, Vol.31 (11), p.1727-1739</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-a687d00fccb1896027d71321d76384c270b861d5db150d70feb586d5011ee4ee3</citedby><cites>FETCH-LOGICAL-c296t-a687d00fccb1896027d71321d76384c270b861d5db150d70feb586d5011ee4ee3</cites><orcidid>0000-0002-1581-3536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10255715$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10255715$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhai, Jianwang</creatorcontrib><creatorcontrib>Cai, Yici</creatorcontrib><title>Microarchitecture Design Space Exploration via Pareto-Driven Active Learning</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we propose a microarchitecture design space exploration (DSE) approach via Pareto-driven active learning (AL). First, a more accurate dynamic tree ensemble model is used to guide the exploration and can give the importance of each design parameter. Then, a Pareto-driven AL approach is proposed that prioritizes the exploration of designs with larger hypervolume contributions in the predicted Pareto fronts and allows the acceptance of poor solutions to handle model inaccuracies. Finally, a parallel strategy is utilized to speed up the exploration. The experimental results on the 7-nm RISC-V Berkeley out-of-order machine (BOOM) show that our method can find diversified designs converging to real Pareto fronts more efficiently, achieving better exploration quality and efficiency than previous work.</description><subject>Active learning</subject><subject>Active learning (AL)</subject><subject>Analytical models</subject><subject>Computer architecture</subject><subject>Design parameters</subject><subject>design space exploration (DSE)</subject><subject>hypervolume</subject><subject>Learning</subject><subject>Measurement</subject><subject>Microarchitecture</subject><subject>Microprocessors</subject><subject>Pareto fronts</subject><subject>Power consumption</subject><subject>Predictive models</subject><subject>Program processors</subject><subject>RISC</subject><subject>RISC-V Berkeley out-of-order machine (BOOM)</subject><subject>Space exploration</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1OwzAQhC0EEqXwAohDJM4pu05iO8eq5adSEEgtXC3H2RRXJSlOWsHb49Ie2MvsYWZX8zF2jTBChPxu8V7MZyMOPBklCaLgcMIGmGUyzsOchh1EEiuOcM4uum4FgGmaw4AVz8761nj74Xqy_dZTNKXOLZtovjGWovvvzbr1pndtE-2ciV6Np76Np97tqInGtg8aFWR845rlJTurzbqjq6MO2dvD_WLyFBcvj7PJuIgtz0UfG6FkBVBbW6LKBXBZSUw4VlIkKrVcQqkEVllVYgaVhJrKTIkqA0SilCgZstvD3Y1vv7bU9XrVbn0TXmqupMogFE2Dix9coWDXear1xrtP4380gt5T03_U9J6aPlILoZtDyBHRvwAPLDFLfgFu8WiI</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Zhai, Jianwang</creator><creator>Cai, Yici</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1581-3536</orcidid></search><sort><creationdate>20231101</creationdate><title>Microarchitecture Design Space Exploration via Pareto-Driven Active Learning</title><author>Zhai, Jianwang ; Cai, Yici</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-a687d00fccb1896027d71321d76384c270b861d5db150d70feb586d5011ee4ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active learning</topic><topic>Active learning (AL)</topic><topic>Analytical models</topic><topic>Computer architecture</topic><topic>Design parameters</topic><topic>design space exploration (DSE)</topic><topic>hypervolume</topic><topic>Learning</topic><topic>Measurement</topic><topic>Microarchitecture</topic><topic>Microprocessors</topic><topic>Pareto fronts</topic><topic>Power consumption</topic><topic>Predictive models</topic><topic>Program processors</topic><topic>RISC</topic><topic>RISC-V Berkeley out-of-order machine (BOOM)</topic><topic>Space exploration</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Jianwang</creatorcontrib><creatorcontrib>Cai, Yici</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhai, Jianwang</au><au>Cai, Yici</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microarchitecture Design Space Exploration via Pareto-Driven Active Learning</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>31</volume><issue>11</issue><spage>1727</spage><epage>1739</epage><pages>1727-1739</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Microarchitecture design is a key stage of processor development involving various core design metrics, e.g., performance, power consumption, etc. However, due to the high complexity and huge design space of microarchitecture, it becomes challenging to get better designs quickly. In this article, we propose a microarchitecture design space exploration (DSE) approach via Pareto-driven active learning (AL). First, a more accurate dynamic tree ensemble model is used to guide the exploration and can give the importance of each design parameter. Then, a Pareto-driven AL approach is proposed that prioritizes the exploration of designs with larger hypervolume contributions in the predicted Pareto fronts and allows the acceptance of poor solutions to handle model inaccuracies. Finally, a parallel strategy is utilized to speed up the exploration. The experimental results on the 7-nm RISC-V Berkeley out-of-order machine (BOOM) show that our method can find diversified designs converging to real Pareto fronts more efficiently, achieving better exploration quality and efficiency than previous work.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2023.3311620</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1581-3536</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2023-11, Vol.31 (11), p.1727-1739 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVLSI_2023_3311620 |
source | IEEE Electronic Library (IEL) |
subjects | Active learning Active learning (AL) Analytical models Computer architecture Design parameters design space exploration (DSE) hypervolume Learning Measurement Microarchitecture Microprocessors Pareto fronts Power consumption Predictive models Program processors RISC RISC-V Berkeley out-of-order machine (BOOM) Space exploration Very large scale integration |
title | Microarchitecture Design Space Exploration via Pareto-Driven Active Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A49%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microarchitecture%20Design%20Space%20Exploration%20via%20Pareto-Driven%20Active%20Learning&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Zhai,%20Jianwang&rft.date=2023-11-01&rft.volume=31&rft.issue=11&rft.spage=1727&rft.epage=1739&rft.pages=1727-1739&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2023.3311620&rft_dat=%3Cproquest_RIE%3E2878508214%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878508214&rft_id=info:pmid/&rft_ieee_id=10255715&rfr_iscdi=true |