Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT
With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2021-06, Vol.29 (6), p.1178-1191 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1191 |
---|---|
container_issue | 6 |
container_start_page | 1178 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 29 |
creator | Cheng, Chung-Kuan Ho, Chia-Tung Lee, Daeyeal Lin, Bill Park, Dongwon |
description | With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimization (STCO) has been proposed to exploit the benefits of 3-D architectures. Complementary-FET (CFET) technology, which stacks p-FET on n-FET or vice versa, can release the restriction of p-n separation and reduce in-cell routing congestion by enabling p-n direct connections. However, CFET standard cell (SDC) synthesis demands holistic considerations to maximize the area benefit of scaling at the block level due to the extremely limited routability that comes from the stacked structure and reduced cell height. In this article, we propose a satisfiability modulo theory (SMT)-based CFET SDC synthesis framework that simultaneously solves place-and-route to generate optimized layouts. We first demonstrate that the CFET structure achieves 10.94% and 21.27% reduction on average cell area and metal length, respectively, and 15.10% smaller block-level area compared to Conv. structure as scaling down to 3.5T architecture. For routability, the proposed constraint-based minimum pin length/minimum pin opening and objective-based edge-based pin-separation/M2 track use reduce up to 48% #DRVs at the block level compared to the previous work. Then, through extensive DTCO explorations on ground design rules and #BEOLs, 3.5T CFET SDCs achieve up to 6.50% smaller block-level areas than 4.5T CFET SDCs. Finally, with the assistance of STCO and DTCO, 3.5T CFET SDCs achieve 21.0% on average reduced block-level areas compared to 4.5T Conv. SDCs. |
doi_str_mv | 10.1109/TVLSI.2021.3065639 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2021_3065639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9390403</ieee_id><sourcerecordid>2536868077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b3a684095d4781a77d7e073ed508b7a7115018d94434fc8775bb567a327b615e3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqXwB2CxxAJDyjmO43hEgUKlog5JWS0ncduUJA52KlR-PS5F3HB3Or13T_oQuiYwIQTEQ_4-z2aTEEIyoRCzmIoTNCKM8UD4OvU7xDRIQgLn6MK5LQCJIgEjtEtN2ze61d2g7D6YPuf4LvX9HmeD6iplK5zqpsHZvhs22tUOT61q9ZexH3hlLH7yt3WHvdRL3KBbnOty05nGrPc4NcGiH-q2_lZDbTq8dHW3xtlbfonOVqpx-upvjtHSZ6avwXzxMksf50EZCjYEBVVxEoFgVcQTojivuAZOdcUgKbjihDAgSSWiiEarMuGcFQWLuaIhL2LCNB2j2-Pf3prPnXaD3Jqd7XykDBmNkzgBzr0qPKpKa5yzeiV7W7cehyQgD3jlL155wCv_8HrTzdFUa63_DYIKiIDSHxJKdXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536868077</pqid></control><display><type>article</type><title>Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, Chung-Kuan ; Ho, Chia-Tung ; Lee, Daeyeal ; Lin, Bill ; Park, Dongwon</creator><creatorcontrib>Cheng, Chung-Kuan ; Ho, Chia-Tung ; Lee, Daeyeal ; Lin, Bill ; Park, Dongwon</creatorcontrib><description>With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimization (STCO) has been proposed to exploit the benefits of 3-D architectures. Complementary-FET (CFET) technology, which stacks p-FET on n-FET or vice versa, can release the restriction of p-n separation and reduce in-cell routing congestion by enabling p-n direct connections. However, CFET standard cell (SDC) synthesis demands holistic considerations to maximize the area benefit of scaling at the block level due to the extremely limited routability that comes from the stacked structure and reduced cell height. In this article, we propose a satisfiability modulo theory (SMT)-based CFET SDC synthesis framework that simultaneously solves place-and-route to generate optimized layouts. We first demonstrate that the CFET structure achieves 10.94% and 21.27% reduction on average cell area and metal length, respectively, and 15.10% smaller block-level area compared to Conv. structure as scaling down to 3.5T architecture. For routability, the proposed constraint-based minimum pin length/minimum pin opening and objective-based edge-based pin-separation/M2 track use reduce up to 48% #DRVs at the block level compared to the previous work. Then, through extensive DTCO explorations on ground design rules and #BEOLs, 3.5T CFET SDCs achieve up to 6.50% smaller block-level areas than 4.5T CFET SDCs. Finally, with the assistance of STCO and DTCO, 3.5T CFET SDCs achieve 21.0% on average reduced block-level areas compared to 4.5T Conv. SDCs.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2021.3065639</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Area ; Automated cell generation ; cell synthesis ; complementary-FET (CFET) ; Computer architecture ; Design optimization ; design technology co-optimization (DTCO) ; Field effect transistors ; Layout ; Microprocessors ; Optimization ; Pins ; placement ; Routing ; satisfiability modulo theory (SMT) ; Scaling ; Separation ; Shape ; standard cell ; Synthesis ; system technology co-optimization (STCO)</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2021-06, Vol.29 (6), p.1178-1191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-b3a684095d4781a77d7e073ed508b7a7115018d94434fc8775bb567a327b615e3</citedby><cites>FETCH-LOGICAL-c295t-b3a684095d4781a77d7e073ed508b7a7115018d94434fc8775bb567a327b615e3</cites><orcidid>0000-0003-1508-3315 ; 0000-0002-9865-8390 ; 0000-0003-0965-7247 ; 0000-0003-0778-0110 ; 0000-0002-6479-7552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9390403$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9390403$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Chung-Kuan</creatorcontrib><creatorcontrib>Ho, Chia-Tung</creatorcontrib><creatorcontrib>Lee, Daeyeal</creatorcontrib><creatorcontrib>Lin, Bill</creatorcontrib><creatorcontrib>Park, Dongwon</creatorcontrib><title>Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimization (STCO) has been proposed to exploit the benefits of 3-D architectures. Complementary-FET (CFET) technology, which stacks p-FET on n-FET or vice versa, can release the restriction of p-n separation and reduce in-cell routing congestion by enabling p-n direct connections. However, CFET standard cell (SDC) synthesis demands holistic considerations to maximize the area benefit of scaling at the block level due to the extremely limited routability that comes from the stacked structure and reduced cell height. In this article, we propose a satisfiability modulo theory (SMT)-based CFET SDC synthesis framework that simultaneously solves place-and-route to generate optimized layouts. We first demonstrate that the CFET structure achieves 10.94% and 21.27% reduction on average cell area and metal length, respectively, and 15.10% smaller block-level area compared to Conv. structure as scaling down to 3.5T architecture. For routability, the proposed constraint-based minimum pin length/minimum pin opening and objective-based edge-based pin-separation/M2 track use reduce up to 48% #DRVs at the block level compared to the previous work. Then, through extensive DTCO explorations on ground design rules and #BEOLs, 3.5T CFET SDCs achieve up to 6.50% smaller block-level areas than 4.5T CFET SDCs. Finally, with the assistance of STCO and DTCO, 3.5T CFET SDCs achieve 21.0% on average reduced block-level areas compared to 4.5T Conv. SDCs.</description><subject>Area</subject><subject>Automated cell generation</subject><subject>cell synthesis</subject><subject>complementary-FET (CFET)</subject><subject>Computer architecture</subject><subject>Design optimization</subject><subject>design technology co-optimization (DTCO)</subject><subject>Field effect transistors</subject><subject>Layout</subject><subject>Microprocessors</subject><subject>Optimization</subject><subject>Pins</subject><subject>placement</subject><subject>Routing</subject><subject>satisfiability modulo theory (SMT)</subject><subject>Scaling</subject><subject>Separation</subject><subject>Shape</subject><subject>standard cell</subject><subject>Synthesis</subject><subject>system technology co-optimization (STCO)</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQhS0EEqXwB2CxxAJDyjmO43hEgUKlog5JWS0ncduUJA52KlR-PS5F3HB3Or13T_oQuiYwIQTEQ_4-z2aTEEIyoRCzmIoTNCKM8UD4OvU7xDRIQgLn6MK5LQCJIgEjtEtN2ze61d2g7D6YPuf4LvX9HmeD6iplK5zqpsHZvhs22tUOT61q9ZexH3hlLH7yt3WHvdRL3KBbnOty05nGrPc4NcGiH-q2_lZDbTq8dHW3xtlbfonOVqpx-upvjtHSZ6avwXzxMksf50EZCjYEBVVxEoFgVcQTojivuAZOdcUgKbjihDAgSSWiiEarMuGcFQWLuaIhL2LCNB2j2-Pf3prPnXaD3Jqd7XykDBmNkzgBzr0qPKpKa5yzeiV7W7cehyQgD3jlL155wCv_8HrTzdFUa63_DYIKiIDSHxJKdXY</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Cheng, Chung-Kuan</creator><creator>Ho, Chia-Tung</creator><creator>Lee, Daeyeal</creator><creator>Lin, Bill</creator><creator>Park, Dongwon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1508-3315</orcidid><orcidid>https://orcid.org/0000-0002-9865-8390</orcidid><orcidid>https://orcid.org/0000-0003-0965-7247</orcidid><orcidid>https://orcid.org/0000-0003-0778-0110</orcidid><orcidid>https://orcid.org/0000-0002-6479-7552</orcidid></search><sort><creationdate>20210601</creationdate><title>Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT</title><author>Cheng, Chung-Kuan ; Ho, Chia-Tung ; Lee, Daeyeal ; Lin, Bill ; Park, Dongwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b3a684095d4781a77d7e073ed508b7a7115018d94434fc8775bb567a327b615e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Area</topic><topic>Automated cell generation</topic><topic>cell synthesis</topic><topic>complementary-FET (CFET)</topic><topic>Computer architecture</topic><topic>Design optimization</topic><topic>design technology co-optimization (DTCO)</topic><topic>Field effect transistors</topic><topic>Layout</topic><topic>Microprocessors</topic><topic>Optimization</topic><topic>Pins</topic><topic>placement</topic><topic>Routing</topic><topic>satisfiability modulo theory (SMT)</topic><topic>Scaling</topic><topic>Separation</topic><topic>Shape</topic><topic>standard cell</topic><topic>Synthesis</topic><topic>system technology co-optimization (STCO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chung-Kuan</creatorcontrib><creatorcontrib>Ho, Chia-Tung</creatorcontrib><creatorcontrib>Lee, Daeyeal</creatorcontrib><creatorcontrib>Lin, Bill</creatorcontrib><creatorcontrib>Park, Dongwon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Chung-Kuan</au><au>Ho, Chia-Tung</au><au>Lee, Daeyeal</au><au>Lin, Bill</au><au>Park, Dongwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>29</volume><issue>6</issue><spage>1178</spage><epage>1191</epage><pages>1178-1191</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimization (STCO) has been proposed to exploit the benefits of 3-D architectures. Complementary-FET (CFET) technology, which stacks p-FET on n-FET or vice versa, can release the restriction of p-n separation and reduce in-cell routing congestion by enabling p-n direct connections. However, CFET standard cell (SDC) synthesis demands holistic considerations to maximize the area benefit of scaling at the block level due to the extremely limited routability that comes from the stacked structure and reduced cell height. In this article, we propose a satisfiability modulo theory (SMT)-based CFET SDC synthesis framework that simultaneously solves place-and-route to generate optimized layouts. We first demonstrate that the CFET structure achieves 10.94% and 21.27% reduction on average cell area and metal length, respectively, and 15.10% smaller block-level area compared to Conv. structure as scaling down to 3.5T architecture. For routability, the proposed constraint-based minimum pin length/minimum pin opening and objective-based edge-based pin-separation/M2 track use reduce up to 48% #DRVs at the block level compared to the previous work. Then, through extensive DTCO explorations on ground design rules and #BEOLs, 3.5T CFET SDCs achieve up to 6.50% smaller block-level areas than 4.5T CFET SDCs. Finally, with the assistance of STCO and DTCO, 3.5T CFET SDCs achieve 21.0% on average reduced block-level areas compared to 4.5T Conv. SDCs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2021.3065639</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1508-3315</orcidid><orcidid>https://orcid.org/0000-0002-9865-8390</orcidid><orcidid>https://orcid.org/0000-0003-0965-7247</orcidid><orcidid>https://orcid.org/0000-0003-0778-0110</orcidid><orcidid>https://orcid.org/0000-0002-6479-7552</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2021-06, Vol.29 (6), p.1178-1191 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVLSI_2021_3065639 |
source | IEEE Electronic Library (IEL) |
subjects | Area Automated cell generation cell synthesis complementary-FET (CFET) Computer architecture Design optimization design technology co-optimization (DTCO) Field effect transistors Layout Microprocessors Optimization Pins placement Routing satisfiability modulo theory (SMT) Scaling Separation Shape standard cell Synthesis system technology co-optimization (STCO) |
title | Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complementary-FET%20(CFET)%20Standard%20Cell%20Synthesis%20Framework%20for%20Design%20and%20System%20Technology%20Co-Optimization%20Using%20SMT&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Cheng,%20Chung-Kuan&rft.date=2021-06-01&rft.volume=29&rft.issue=6&rft.spage=1178&rft.epage=1191&rft.pages=1178-1191&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2021.3065639&rft_dat=%3Cproquest_RIE%3E2536868077%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536868077&rft_id=info:pmid/&rft_ieee_id=9390403&rfr_iscdi=true |