Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT

With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2021-06, Vol.29 (6), p.1178-1191
Hauptverfasser: Cheng, Chung-Kuan, Ho, Chia-Tung, Lee, Daeyeal, Lin, Bill, Park, Dongwon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1191
container_issue 6
container_start_page 1178
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 29
creator Cheng, Chung-Kuan
Ho, Chia-Tung
Lee, Daeyeal
Lin, Bill
Park, Dongwon
description With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimization (STCO) has been proposed to exploit the benefits of 3-D architectures. Complementary-FET (CFET) technology, which stacks p-FET on n-FET or vice versa, can release the restriction of p-n separation and reduce in-cell routing congestion by enabling p-n direct connections. However, CFET standard cell (SDC) synthesis demands holistic considerations to maximize the area benefit of scaling at the block level due to the extremely limited routability that comes from the stacked structure and reduced cell height. In this article, we propose a satisfiability modulo theory (SMT)-based CFET SDC synthesis framework that simultaneously solves place-and-route to generate optimized layouts. We first demonstrate that the CFET structure achieves 10.94% and 21.27% reduction on average cell area and metal length, respectively, and 15.10% smaller block-level area compared to Conv. structure as scaling down to 3.5T architecture. For routability, the proposed constraint-based minimum pin length/minimum pin opening and objective-based edge-based pin-separation/M2 track use reduce up to 48% #DRVs at the block level compared to the previous work. Then, through extensive DTCO explorations on ground design rules and #BEOLs, 3.5T CFET SDCs achieve up to 6.50% smaller block-level areas than 4.5T CFET SDCs. Finally, with the assistance of STCO and DTCO, 3.5T CFET SDCs achieve 21.0% on average reduced block-level areas compared to 4.5T Conv. SDCs.
doi_str_mv 10.1109/TVLSI.2021.3065639
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2021_3065639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9390403</ieee_id><sourcerecordid>2536868077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-b3a684095d4781a77d7e073ed508b7a7115018d94434fc8775bb567a327b615e3</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqXwB2CxxAJDyjmO43hEgUKlog5JWS0ncduUJA52KlR-PS5F3HB3Or13T_oQuiYwIQTEQ_4-z2aTEEIyoRCzmIoTNCKM8UD4OvU7xDRIQgLn6MK5LQCJIgEjtEtN2ze61d2g7D6YPuf4LvX9HmeD6iplK5zqpsHZvhs22tUOT61q9ZexH3hlLH7yt3WHvdRL3KBbnOty05nGrPc4NcGiH-q2_lZDbTq8dHW3xtlbfonOVqpx-upvjtHSZ6avwXzxMksf50EZCjYEBVVxEoFgVcQTojivuAZOdcUgKbjihDAgSSWiiEarMuGcFQWLuaIhL2LCNB2j2-Pf3prPnXaD3Jqd7XykDBmNkzgBzr0qPKpKa5yzeiV7W7cehyQgD3jlL155wCv_8HrTzdFUa63_DYIKiIDSHxJKdXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536868077</pqid></control><display><type>article</type><title>Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, Chung-Kuan ; Ho, Chia-Tung ; Lee, Daeyeal ; Lin, Bill ; Park, Dongwon</creator><creatorcontrib>Cheng, Chung-Kuan ; Ho, Chia-Tung ; Lee, Daeyeal ; Lin, Bill ; Park, Dongwon</creatorcontrib><description>With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimization (STCO) has been proposed to exploit the benefits of 3-D architectures. Complementary-FET (CFET) technology, which stacks p-FET on n-FET or vice versa, can release the restriction of p-n separation and reduce in-cell routing congestion by enabling p-n direct connections. However, CFET standard cell (SDC) synthesis demands holistic considerations to maximize the area benefit of scaling at the block level due to the extremely limited routability that comes from the stacked structure and reduced cell height. In this article, we propose a satisfiability modulo theory (SMT)-based CFET SDC synthesis framework that simultaneously solves place-and-route to generate optimized layouts. We first demonstrate that the CFET structure achieves 10.94% and 21.27% reduction on average cell area and metal length, respectively, and 15.10% smaller block-level area compared to Conv. structure as scaling down to 3.5T architecture. For routability, the proposed constraint-based minimum pin length/minimum pin opening and objective-based edge-based pin-separation/M2 track use reduce up to 48% #DRVs at the block level compared to the previous work. Then, through extensive DTCO explorations on ground design rules and #BEOLs, 3.5T CFET SDCs achieve up to 6.50% smaller block-level areas than 4.5T CFET SDCs. Finally, with the assistance of STCO and DTCO, 3.5T CFET SDCs achieve 21.0% on average reduced block-level areas compared to 4.5T Conv. SDCs.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2021.3065639</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Area ; Automated cell generation ; cell synthesis ; complementary-FET (CFET) ; Computer architecture ; Design optimization ; design technology co-optimization (DTCO) ; Field effect transistors ; Layout ; Microprocessors ; Optimization ; Pins ; placement ; Routing ; satisfiability modulo theory (SMT) ; Scaling ; Separation ; Shape ; standard cell ; Synthesis ; system technology co-optimization (STCO)</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2021-06, Vol.29 (6), p.1178-1191</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-b3a684095d4781a77d7e073ed508b7a7115018d94434fc8775bb567a327b615e3</citedby><cites>FETCH-LOGICAL-c295t-b3a684095d4781a77d7e073ed508b7a7115018d94434fc8775bb567a327b615e3</cites><orcidid>0000-0003-1508-3315 ; 0000-0002-9865-8390 ; 0000-0003-0965-7247 ; 0000-0003-0778-0110 ; 0000-0002-6479-7552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9390403$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9390403$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Chung-Kuan</creatorcontrib><creatorcontrib>Ho, Chia-Tung</creatorcontrib><creatorcontrib>Lee, Daeyeal</creatorcontrib><creatorcontrib>Lin, Bill</creatorcontrib><creatorcontrib>Park, Dongwon</creatorcontrib><title>Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimization (STCO) has been proposed to exploit the benefits of 3-D architectures. Complementary-FET (CFET) technology, which stacks p-FET on n-FET or vice versa, can release the restriction of p-n separation and reduce in-cell routing congestion by enabling p-n direct connections. However, CFET standard cell (SDC) synthesis demands holistic considerations to maximize the area benefit of scaling at the block level due to the extremely limited routability that comes from the stacked structure and reduced cell height. In this article, we propose a satisfiability modulo theory (SMT)-based CFET SDC synthesis framework that simultaneously solves place-and-route to generate optimized layouts. We first demonstrate that the CFET structure achieves 10.94% and 21.27% reduction on average cell area and metal length, respectively, and 15.10% smaller block-level area compared to Conv. structure as scaling down to 3.5T architecture. For routability, the proposed constraint-based minimum pin length/minimum pin opening and objective-based edge-based pin-separation/M2 track use reduce up to 48% #DRVs at the block level compared to the previous work. Then, through extensive DTCO explorations on ground design rules and #BEOLs, 3.5T CFET SDCs achieve up to 6.50% smaller block-level areas than 4.5T CFET SDCs. Finally, with the assistance of STCO and DTCO, 3.5T CFET SDCs achieve 21.0% on average reduced block-level areas compared to 4.5T Conv. SDCs.</description><subject>Area</subject><subject>Automated cell generation</subject><subject>cell synthesis</subject><subject>complementary-FET (CFET)</subject><subject>Computer architecture</subject><subject>Design optimization</subject><subject>design technology co-optimization (DTCO)</subject><subject>Field effect transistors</subject><subject>Layout</subject><subject>Microprocessors</subject><subject>Optimization</subject><subject>Pins</subject><subject>placement</subject><subject>Routing</subject><subject>satisfiability modulo theory (SMT)</subject><subject>Scaling</subject><subject>Separation</subject><subject>Shape</subject><subject>standard cell</subject><subject>Synthesis</subject><subject>system technology co-optimization (STCO)</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQhS0EEqXwB2CxxAJDyjmO43hEgUKlog5JWS0ncduUJA52KlR-PS5F3HB3Or13T_oQuiYwIQTEQ_4-z2aTEEIyoRCzmIoTNCKM8UD4OvU7xDRIQgLn6MK5LQCJIgEjtEtN2ze61d2g7D6YPuf4LvX9HmeD6iplK5zqpsHZvhs22tUOT61q9ZexH3hlLH7yt3WHvdRL3KBbnOty05nGrPc4NcGiH-q2_lZDbTq8dHW3xtlbfonOVqpx-upvjtHSZ6avwXzxMksf50EZCjYEBVVxEoFgVcQTojivuAZOdcUgKbjihDAgSSWiiEarMuGcFQWLuaIhL2LCNB2j2-Pf3prPnXaD3Jqd7XykDBmNkzgBzr0qPKpKa5yzeiV7W7cehyQgD3jlL155wCv_8HrTzdFUa63_DYIKiIDSHxJKdXY</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Cheng, Chung-Kuan</creator><creator>Ho, Chia-Tung</creator><creator>Lee, Daeyeal</creator><creator>Lin, Bill</creator><creator>Park, Dongwon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1508-3315</orcidid><orcidid>https://orcid.org/0000-0002-9865-8390</orcidid><orcidid>https://orcid.org/0000-0003-0965-7247</orcidid><orcidid>https://orcid.org/0000-0003-0778-0110</orcidid><orcidid>https://orcid.org/0000-0002-6479-7552</orcidid></search><sort><creationdate>20210601</creationdate><title>Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT</title><author>Cheng, Chung-Kuan ; Ho, Chia-Tung ; Lee, Daeyeal ; Lin, Bill ; Park, Dongwon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-b3a684095d4781a77d7e073ed508b7a7115018d94434fc8775bb567a327b615e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Area</topic><topic>Automated cell generation</topic><topic>cell synthesis</topic><topic>complementary-FET (CFET)</topic><topic>Computer architecture</topic><topic>Design optimization</topic><topic>design technology co-optimization (DTCO)</topic><topic>Field effect transistors</topic><topic>Layout</topic><topic>Microprocessors</topic><topic>Optimization</topic><topic>Pins</topic><topic>placement</topic><topic>Routing</topic><topic>satisfiability modulo theory (SMT)</topic><topic>Scaling</topic><topic>Separation</topic><topic>Shape</topic><topic>standard cell</topic><topic>Synthesis</topic><topic>system technology co-optimization (STCO)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Chung-Kuan</creatorcontrib><creatorcontrib>Ho, Chia-Tung</creatorcontrib><creatorcontrib>Lee, Daeyeal</creatorcontrib><creatorcontrib>Lin, Bill</creatorcontrib><creatorcontrib>Park, Dongwon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Chung-Kuan</au><au>Ho, Chia-Tung</au><au>Lee, Daeyeal</au><au>Lin, Bill</au><au>Park, Dongwon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>29</volume><issue>6</issue><spage>1178</spage><epage>1191</epage><pages>1178-1191</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>With the relentless scaling of technology nodes, design technology co-optimization (DTCO) for the conventional (Conv.) cell structure is starting to reach its limitations due to limited routing resources, lateral p-n separations, and performance requirements. As a result, system technology co-optimization (STCO) has been proposed to exploit the benefits of 3-D architectures. Complementary-FET (CFET) technology, which stacks p-FET on n-FET or vice versa, can release the restriction of p-n separation and reduce in-cell routing congestion by enabling p-n direct connections. However, CFET standard cell (SDC) synthesis demands holistic considerations to maximize the area benefit of scaling at the block level due to the extremely limited routability that comes from the stacked structure and reduced cell height. In this article, we propose a satisfiability modulo theory (SMT)-based CFET SDC synthesis framework that simultaneously solves place-and-route to generate optimized layouts. We first demonstrate that the CFET structure achieves 10.94% and 21.27% reduction on average cell area and metal length, respectively, and 15.10% smaller block-level area compared to Conv. structure as scaling down to 3.5T architecture. For routability, the proposed constraint-based minimum pin length/minimum pin opening and objective-based edge-based pin-separation/M2 track use reduce up to 48% #DRVs at the block level compared to the previous work. Then, through extensive DTCO explorations on ground design rules and #BEOLs, 3.5T CFET SDCs achieve up to 6.50% smaller block-level areas than 4.5T CFET SDCs. Finally, with the assistance of STCO and DTCO, 3.5T CFET SDCs achieve 21.0% on average reduced block-level areas compared to 4.5T Conv. SDCs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2021.3065639</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1508-3315</orcidid><orcidid>https://orcid.org/0000-0002-9865-8390</orcidid><orcidid>https://orcid.org/0000-0003-0965-7247</orcidid><orcidid>https://orcid.org/0000-0003-0778-0110</orcidid><orcidid>https://orcid.org/0000-0002-6479-7552</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2021-06, Vol.29 (6), p.1178-1191
issn 1063-8210
1557-9999
language eng
recordid cdi_crossref_primary_10_1109_TVLSI_2021_3065639
source IEEE Electronic Library (IEL)
subjects Area
Automated cell generation
cell synthesis
complementary-FET (CFET)
Computer architecture
Design optimization
design technology co-optimization (DTCO)
Field effect transistors
Layout
Microprocessors
Optimization
Pins
placement
Routing
satisfiability modulo theory (SMT)
Scaling
Separation
Shape
standard cell
Synthesis
system technology co-optimization (STCO)
title Complementary-FET (CFET) Standard Cell Synthesis Framework for Design and System Technology Co-Optimization Using SMT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A08%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complementary-FET%20(CFET)%20Standard%20Cell%20Synthesis%20Framework%20for%20Design%20and%20System%20Technology%20Co-Optimization%20Using%20SMT&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Cheng,%20Chung-Kuan&rft.date=2021-06-01&rft.volume=29&rft.issue=6&rft.spage=1178&rft.epage=1191&rft.pages=1178-1191&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2021.3065639&rft_dat=%3Cproquest_RIE%3E2536868077%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536868077&rft_id=info:pmid/&rft_ieee_id=9390403&rfr_iscdi=true