RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs

Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2020-08, Vol.28 (8), p.1925-1929
Hauptverfasser: Irfan, Muhammad, Ullah, Zahid, Chowdhury, Mehdi Hasan, Cheung, Ray C. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1929
container_issue 8
container_start_page 1925
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 28
creator Irfan, Muhammad
Ullah, Zahid
Chowdhury, Mehdi Hasan
Cheung, Ray C. C.
description Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is an essential part of every network to perform packet classification and forwarding, but they are missing in modern FPGAs. Researchers and FPGA vendors have proposed several designs to emulate TCAM using available memories on FPGA, but they are power inefficient due to the activating of entire circuitry in a single search operation. In this brief, we propose a novel power-aware reconfigurable FPGA-based TCAM architecture that enables only a portion of the hardware to perform the search operation. We performed an extensive design space exploration to find the optimal number of banks on Xilinx FPGAs, which provides the maximum power saving. Moreover, we propose a solution to bank overflow using backup CAM (BUC) to handle the overflowed CAM entries. The proposed TCAM improves the power consumption by 40% and maintains one-clock cycle update latency with no compromise on the throughput of the system compared with the state-of-the-art FPGA-based TCAM architectures.
doi_str_mv 10.1109/TVLSI.2020.2993168
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2020_2993168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9099062</ieee_id><sourcerecordid>2429301780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-4cca42edb10bd3e88632cc9736a02006f00f1c83db912affc7ac156b69da57d33</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-BSiXOGk7Rpw62qtjFpE9MoXKM0TVCnrYFkE-Lfk30IX2zL72vZD0L3BEaEgHiqP-ZvsxEFCiMqBCO8uEADkmU5FjEuYw2c4YISuEY3IawBSJoKGKB6tRzjuioXz8nKaNfb7nPvVbMxydL9GI_H1na6M_0uqY3vlf9NKtfvYo_LtvUmhKN2YbYujlyfTJbTMtyiK6s2wdyd8xC9T8Z19YLnr9NZVc6xpiLb4VRrlVLTNgSalpmi4IxqLXLGVXwEuAWwRBesbQShylqdK00y3nDRqixvGRuix9PeL---9ybs5Nrt45WbIGlKBQOSFxBV9KTS3oXgjZVfvtvGVyQBeaAnj_TkgZ4804umh5OpM8b8GwQIAZyyP_L6atA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429301780</pqid></control><display><type>article</type><title>RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs</title><source>IEEE Electronic Library (IEL)</source><creator>Irfan, Muhammad ; Ullah, Zahid ; Chowdhury, Mehdi Hasan ; Cheung, Ray C. C.</creator><creatorcontrib>Irfan, Muhammad ; Ullah, Zahid ; Chowdhury, Mehdi Hasan ; Cheung, Ray C. C.</creatorcontrib><description>Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is an essential part of every network to perform packet classification and forwarding, but they are missing in modern FPGAs. Researchers and FPGA vendors have proposed several designs to emulate TCAM using available memories on FPGA, but they are power inefficient due to the activating of entire circuitry in a single search operation. In this brief, we propose a novel power-aware reconfigurable FPGA-based TCAM architecture that enables only a portion of the hardware to perform the search operation. We performed an extensive design space exploration to find the optimal number of banks on Xilinx FPGAs, which provides the maximum power saving. Moreover, we propose a solution to bank overflow using backup CAM (BUC) to handle the overflowed CAM entries. The proposed TCAM improves the power consumption by 40% and maintains one-clock cycle update latency with no compromise on the throughput of the system compared with the state-of-the-art FPGA-based TCAM architectures.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2020.2993168</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Associative memory ; Bank-selection ; Circuits ; Clocks ; Computer architecture ; content-addressable storage ; Energy conservation ; Field programmable gate arrays ; field-programmable gate arrays (FPGAs) ; FPGA-based TCAM ; Hardware ; Logic gates ; Maximum power ; Microprocessors ; Network latency ; Power consumption ; Power demand ; Power management ; power saving ; Programmable controllers ; Reconfiguration ; Software-defined networking ; software-defined networks ; Space exploration ; table lookup</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2020-08, Vol.28 (8), p.1925-1929</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-4cca42edb10bd3e88632cc9736a02006f00f1c83db912affc7ac156b69da57d33</citedby><cites>FETCH-LOGICAL-c295t-4cca42edb10bd3e88632cc9736a02006f00f1c83db912affc7ac156b69da57d33</cites><orcidid>0000-0002-7645-8443 ; 0000-0002-5633-6764 ; 0000-0001-6568-3736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9099062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9099062$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Ullah, Zahid</creatorcontrib><creatorcontrib>Chowdhury, Mehdi Hasan</creatorcontrib><creatorcontrib>Cheung, Ray C. C.</creatorcontrib><title>RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is an essential part of every network to perform packet classification and forwarding, but they are missing in modern FPGAs. Researchers and FPGA vendors have proposed several designs to emulate TCAM using available memories on FPGA, but they are power inefficient due to the activating of entire circuitry in a single search operation. In this brief, we propose a novel power-aware reconfigurable FPGA-based TCAM architecture that enables only a portion of the hardware to perform the search operation. We performed an extensive design space exploration to find the optimal number of banks on Xilinx FPGAs, which provides the maximum power saving. Moreover, we propose a solution to bank overflow using backup CAM (BUC) to handle the overflowed CAM entries. The proposed TCAM improves the power consumption by 40% and maintains one-clock cycle update latency with no compromise on the throughput of the system compared with the state-of-the-art FPGA-based TCAM architectures.</description><subject>Associative memory</subject><subject>Bank-selection</subject><subject>Circuits</subject><subject>Clocks</subject><subject>Computer architecture</subject><subject>content-addressable storage</subject><subject>Energy conservation</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate arrays (FPGAs)</subject><subject>FPGA-based TCAM</subject><subject>Hardware</subject><subject>Logic gates</subject><subject>Maximum power</subject><subject>Microprocessors</subject><subject>Network latency</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Power management</subject><subject>power saving</subject><subject>Programmable controllers</subject><subject>Reconfiguration</subject><subject>Software-defined networking</subject><subject>software-defined networks</subject><subject>Space exploration</subject><subject>table lookup</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwB-BSiXOGk7Rpw62qtjFpE9MoXKM0TVCnrYFkE-Lfk30IX2zL72vZD0L3BEaEgHiqP-ZvsxEFCiMqBCO8uEADkmU5FjEuYw2c4YISuEY3IawBSJoKGKB6tRzjuioXz8nKaNfb7nPvVbMxydL9GI_H1na6M_0uqY3vlf9NKtfvYo_LtvUmhKN2YbYujlyfTJbTMtyiK6s2wdyd8xC9T8Z19YLnr9NZVc6xpiLb4VRrlVLTNgSalpmi4IxqLXLGVXwEuAWwRBesbQShylqdK00y3nDRqixvGRuix9PeL---9ybs5Nrt45WbIGlKBQOSFxBV9KTS3oXgjZVfvtvGVyQBeaAnj_TkgZ4804umh5OpM8b8GwQIAZyyP_L6atA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Irfan, Muhammad</creator><creator>Ullah, Zahid</creator><creator>Chowdhury, Mehdi Hasan</creator><creator>Cheung, Ray C. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7645-8443</orcidid><orcidid>https://orcid.org/0000-0002-5633-6764</orcidid><orcidid>https://orcid.org/0000-0001-6568-3736</orcidid></search><sort><creationdate>20200801</creationdate><title>RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs</title><author>Irfan, Muhammad ; Ullah, Zahid ; Chowdhury, Mehdi Hasan ; Cheung, Ray C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-4cca42edb10bd3e88632cc9736a02006f00f1c83db912affc7ac156b69da57d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Associative memory</topic><topic>Bank-selection</topic><topic>Circuits</topic><topic>Clocks</topic><topic>Computer architecture</topic><topic>content-addressable storage</topic><topic>Energy conservation</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate arrays (FPGAs)</topic><topic>FPGA-based TCAM</topic><topic>Hardware</topic><topic>Logic gates</topic><topic>Maximum power</topic><topic>Microprocessors</topic><topic>Network latency</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Power management</topic><topic>power saving</topic><topic>Programmable controllers</topic><topic>Reconfiguration</topic><topic>Software-defined networking</topic><topic>software-defined networks</topic><topic>Space exploration</topic><topic>table lookup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Ullah, Zahid</creatorcontrib><creatorcontrib>Chowdhury, Mehdi Hasan</creatorcontrib><creatorcontrib>Cheung, Ray C. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irfan, Muhammad</au><au>Ullah, Zahid</au><au>Chowdhury, Mehdi Hasan</au><au>Cheung, Ray C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>28</volume><issue>8</issue><spage>1925</spage><epage>1929</epage><pages>1925-1929</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is an essential part of every network to perform packet classification and forwarding, but they are missing in modern FPGAs. Researchers and FPGA vendors have proposed several designs to emulate TCAM using available memories on FPGA, but they are power inefficient due to the activating of entire circuitry in a single search operation. In this brief, we propose a novel power-aware reconfigurable FPGA-based TCAM architecture that enables only a portion of the hardware to perform the search operation. We performed an extensive design space exploration to find the optimal number of banks on Xilinx FPGAs, which provides the maximum power saving. Moreover, we propose a solution to bank overflow using backup CAM (BUC) to handle the overflowed CAM entries. The proposed TCAM improves the power consumption by 40% and maintains one-clock cycle update latency with no compromise on the throughput of the system compared with the state-of-the-art FPGA-based TCAM architectures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2020.2993168</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7645-8443</orcidid><orcidid>https://orcid.org/0000-0002-5633-6764</orcidid><orcidid>https://orcid.org/0000-0001-6568-3736</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2020-08, Vol.28 (8), p.1925-1929
issn 1063-8210
1557-9999
language eng
recordid cdi_crossref_primary_10_1109_TVLSI_2020_2993168
source IEEE Electronic Library (IEL)
subjects Associative memory
Bank-selection
Circuits
Clocks
Computer architecture
content-addressable storage
Energy conservation
Field programmable gate arrays
field-programmable gate arrays (FPGAs)
FPGA-based TCAM
Hardware
Logic gates
Maximum power
Microprocessors
Network latency
Power consumption
Power demand
Power management
power saving
Programmable controllers
Reconfiguration
Software-defined networking
software-defined networks
Space exploration
table lookup
title RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RPE-TCAM:%20Reconfigurable%20Power-Efficient%20Ternary%20Content-Addressable%20Memory%20on%20FPGAs&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Irfan,%20Muhammad&rft.date=2020-08-01&rft.volume=28&rft.issue=8&rft.spage=1925&rft.epage=1929&rft.pages=1925-1929&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2020.2993168&rft_dat=%3Cproquest_RIE%3E2429301780%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429301780&rft_id=info:pmid/&rft_ieee_id=9099062&rfr_iscdi=true