RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs
Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2020-08, Vol.28 (8), p.1925-1929 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1929 |
---|---|
container_issue | 8 |
container_start_page | 1925 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 28 |
creator | Irfan, Muhammad Ullah, Zahid Chowdhury, Mehdi Hasan Cheung, Ray C. C. |
description | Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is an essential part of every network to perform packet classification and forwarding, but they are missing in modern FPGAs. Researchers and FPGA vendors have proposed several designs to emulate TCAM using available memories on FPGA, but they are power inefficient due to the activating of entire circuitry in a single search operation. In this brief, we propose a novel power-aware reconfigurable FPGA-based TCAM architecture that enables only a portion of the hardware to perform the search operation. We performed an extensive design space exploration to find the optimal number of banks on Xilinx FPGAs, which provides the maximum power saving. Moreover, we propose a solution to bank overflow using backup CAM (BUC) to handle the overflowed CAM entries. The proposed TCAM improves the power consumption by 40% and maintains one-clock cycle update latency with no compromise on the throughput of the system compared with the state-of-the-art FPGA-based TCAM architectures. |
doi_str_mv | 10.1109/TVLSI.2020.2993168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2020_2993168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9099062</ieee_id><sourcerecordid>2429301780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-4cca42edb10bd3e88632cc9736a02006f00f1c83db912affc7ac156b69da57d33</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEmPwB-BSiXOGk7Rpw62qtjFpE9MoXKM0TVCnrYFkE-Lfk30IX2zL72vZD0L3BEaEgHiqP-ZvsxEFCiMqBCO8uEADkmU5FjEuYw2c4YISuEY3IawBSJoKGKB6tRzjuioXz8nKaNfb7nPvVbMxydL9GI_H1na6M_0uqY3vlf9NKtfvYo_LtvUmhKN2YbYujlyfTJbTMtyiK6s2wdyd8xC9T8Z19YLnr9NZVc6xpiLb4VRrlVLTNgSalpmi4IxqLXLGVXwEuAWwRBesbQShylqdK00y3nDRqixvGRuix9PeL---9ybs5Nrt45WbIGlKBQOSFxBV9KTS3oXgjZVfvtvGVyQBeaAnj_TkgZ4804umh5OpM8b8GwQIAZyyP_L6atA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429301780</pqid></control><display><type>article</type><title>RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs</title><source>IEEE Electronic Library (IEL)</source><creator>Irfan, Muhammad ; Ullah, Zahid ; Chowdhury, Mehdi Hasan ; Cheung, Ray C. C.</creator><creatorcontrib>Irfan, Muhammad ; Ullah, Zahid ; Chowdhury, Mehdi Hasan ; Cheung, Ray C. C.</creatorcontrib><description>Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is an essential part of every network to perform packet classification and forwarding, but they are missing in modern FPGAs. Researchers and FPGA vendors have proposed several designs to emulate TCAM using available memories on FPGA, but they are power inefficient due to the activating of entire circuitry in a single search operation. In this brief, we propose a novel power-aware reconfigurable FPGA-based TCAM architecture that enables only a portion of the hardware to perform the search operation. We performed an extensive design space exploration to find the optimal number of banks on Xilinx FPGAs, which provides the maximum power saving. Moreover, we propose a solution to bank overflow using backup CAM (BUC) to handle the overflowed CAM entries. The proposed TCAM improves the power consumption by 40% and maintains one-clock cycle update latency with no compromise on the throughput of the system compared with the state-of-the-art FPGA-based TCAM architectures.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2020.2993168</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Associative memory ; Bank-selection ; Circuits ; Clocks ; Computer architecture ; content-addressable storage ; Energy conservation ; Field programmable gate arrays ; field-programmable gate arrays (FPGAs) ; FPGA-based TCAM ; Hardware ; Logic gates ; Maximum power ; Microprocessors ; Network latency ; Power consumption ; Power demand ; Power management ; power saving ; Programmable controllers ; Reconfiguration ; Software-defined networking ; software-defined networks ; Space exploration ; table lookup</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2020-08, Vol.28 (8), p.1925-1929</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-4cca42edb10bd3e88632cc9736a02006f00f1c83db912affc7ac156b69da57d33</citedby><cites>FETCH-LOGICAL-c295t-4cca42edb10bd3e88632cc9736a02006f00f1c83db912affc7ac156b69da57d33</cites><orcidid>0000-0002-7645-8443 ; 0000-0002-5633-6764 ; 0000-0001-6568-3736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9099062$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9099062$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Ullah, Zahid</creatorcontrib><creatorcontrib>Chowdhury, Mehdi Hasan</creatorcontrib><creatorcontrib>Cheung, Ray C. C.</creatorcontrib><title>RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is an essential part of every network to perform packet classification and forwarding, but they are missing in modern FPGAs. Researchers and FPGA vendors have proposed several designs to emulate TCAM using available memories on FPGA, but they are power inefficient due to the activating of entire circuitry in a single search operation. In this brief, we propose a novel power-aware reconfigurable FPGA-based TCAM architecture that enables only a portion of the hardware to perform the search operation. We performed an extensive design space exploration to find the optimal number of banks on Xilinx FPGAs, which provides the maximum power saving. Moreover, we propose a solution to bank overflow using backup CAM (BUC) to handle the overflowed CAM entries. The proposed TCAM improves the power consumption by 40% and maintains one-clock cycle update latency with no compromise on the throughput of the system compared with the state-of-the-art FPGA-based TCAM architectures.</description><subject>Associative memory</subject><subject>Bank-selection</subject><subject>Circuits</subject><subject>Clocks</subject><subject>Computer architecture</subject><subject>content-addressable storage</subject><subject>Energy conservation</subject><subject>Field programmable gate arrays</subject><subject>field-programmable gate arrays (FPGAs)</subject><subject>FPGA-based TCAM</subject><subject>Hardware</subject><subject>Logic gates</subject><subject>Maximum power</subject><subject>Microprocessors</subject><subject>Network latency</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Power management</subject><subject>power saving</subject><subject>Programmable controllers</subject><subject>Reconfiguration</subject><subject>Software-defined networking</subject><subject>software-defined networks</subject><subject>Space exploration</subject><subject>table lookup</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEmPwB-BSiXOGk7Rpw62qtjFpE9MoXKM0TVCnrYFkE-Lfk30IX2zL72vZD0L3BEaEgHiqP-ZvsxEFCiMqBCO8uEADkmU5FjEuYw2c4YISuEY3IawBSJoKGKB6tRzjuioXz8nKaNfb7nPvVbMxydL9GI_H1na6M_0uqY3vlf9NKtfvYo_LtvUmhKN2YbYujlyfTJbTMtyiK6s2wdyd8xC9T8Z19YLnr9NZVc6xpiLb4VRrlVLTNgSalpmi4IxqLXLGVXwEuAWwRBesbQShylqdK00y3nDRqixvGRuix9PeL---9ybs5Nrt45WbIGlKBQOSFxBV9KTS3oXgjZVfvtvGVyQBeaAnj_TkgZ4804umh5OpM8b8GwQIAZyyP_L6atA</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Irfan, Muhammad</creator><creator>Ullah, Zahid</creator><creator>Chowdhury, Mehdi Hasan</creator><creator>Cheung, Ray C. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7645-8443</orcidid><orcidid>https://orcid.org/0000-0002-5633-6764</orcidid><orcidid>https://orcid.org/0000-0001-6568-3736</orcidid></search><sort><creationdate>20200801</creationdate><title>RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs</title><author>Irfan, Muhammad ; Ullah, Zahid ; Chowdhury, Mehdi Hasan ; Cheung, Ray C. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-4cca42edb10bd3e88632cc9736a02006f00f1c83db912affc7ac156b69da57d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Associative memory</topic><topic>Bank-selection</topic><topic>Circuits</topic><topic>Clocks</topic><topic>Computer architecture</topic><topic>content-addressable storage</topic><topic>Energy conservation</topic><topic>Field programmable gate arrays</topic><topic>field-programmable gate arrays (FPGAs)</topic><topic>FPGA-based TCAM</topic><topic>Hardware</topic><topic>Logic gates</topic><topic>Maximum power</topic><topic>Microprocessors</topic><topic>Network latency</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Power management</topic><topic>power saving</topic><topic>Programmable controllers</topic><topic>Reconfiguration</topic><topic>Software-defined networking</topic><topic>software-defined networks</topic><topic>Space exploration</topic><topic>table lookup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Irfan, Muhammad</creatorcontrib><creatorcontrib>Ullah, Zahid</creatorcontrib><creatorcontrib>Chowdhury, Mehdi Hasan</creatorcontrib><creatorcontrib>Cheung, Ray C. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Irfan, Muhammad</au><au>Ullah, Zahid</au><au>Chowdhury, Mehdi Hasan</au><au>Cheung, Ray C. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2020-08-01</date><risdate>2020</risdate><volume>28</volume><issue>8</issue><spage>1925</spage><epage>1929</epage><pages>1925-1929</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Software-defined networks (SDNs) are the future networks that enable the system to be more flexible and programmable using a centralized controller. Field-programmable gate arrays (FPGAs) serve as exemplary hardware to implement these adaptable networks. Ternary content-addressable memory (TCAM) is an essential part of every network to perform packet classification and forwarding, but they are missing in modern FPGAs. Researchers and FPGA vendors have proposed several designs to emulate TCAM using available memories on FPGA, but they are power inefficient due to the activating of entire circuitry in a single search operation. In this brief, we propose a novel power-aware reconfigurable FPGA-based TCAM architecture that enables only a portion of the hardware to perform the search operation. We performed an extensive design space exploration to find the optimal number of banks on Xilinx FPGAs, which provides the maximum power saving. Moreover, we propose a solution to bank overflow using backup CAM (BUC) to handle the overflowed CAM entries. The proposed TCAM improves the power consumption by 40% and maintains one-clock cycle update latency with no compromise on the throughput of the system compared with the state-of-the-art FPGA-based TCAM architectures.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2020.2993168</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7645-8443</orcidid><orcidid>https://orcid.org/0000-0002-5633-6764</orcidid><orcidid>https://orcid.org/0000-0001-6568-3736</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2020-08, Vol.28 (8), p.1925-1929 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVLSI_2020_2993168 |
source | IEEE Electronic Library (IEL) |
subjects | Associative memory Bank-selection Circuits Clocks Computer architecture content-addressable storage Energy conservation Field programmable gate arrays field-programmable gate arrays (FPGAs) FPGA-based TCAM Hardware Logic gates Maximum power Microprocessors Network latency Power consumption Power demand Power management power saving Programmable controllers Reconfiguration Software-defined networking software-defined networks Space exploration table lookup |
title | RPE-TCAM: Reconfigurable Power-Efficient Ternary Content-Addressable Memory on FPGAs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A21%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RPE-TCAM:%20Reconfigurable%20Power-Efficient%20Ternary%20Content-Addressable%20Memory%20on%20FPGAs&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Irfan,%20Muhammad&rft.date=2020-08-01&rft.volume=28&rft.issue=8&rft.spage=1925&rft.epage=1929&rft.pages=1925-1929&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2020.2993168&rft_dat=%3Cproquest_RIE%3E2429301780%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429301780&rft_id=info:pmid/&rft_ieee_id=9099062&rfr_iscdi=true |