Toward Secure Microfluidic Fully Programmable Valve Array Biochips

The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2019-12, Vol.27 (12), p.2755-2766
Hauptverfasser: Shayan, Mohammed, Bhattacharjee, Sukanta, Song, Yong-Ak, Chakrabarty, Krishnendu, Karri, Ramesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2766
container_issue 12
container_start_page 2755
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 27
creator Shayan, Mohammed
Bhattacharjee, Sukanta
Song, Yong-Ak
Chakrabarty, Krishnendu
Karri, Ramesh
description The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analysis. Since these applications are safety critical, addressing security concerns is vital for the success and adoption of FPVAs. This study evaluates the security of FPVA biochips. We show that FPVAs are vulnerable to malicious operations similar to digital and flow-based microfluidic biochips. FPVAs are further prone to new classes of attacks-tunneling and deliberate aging. This study establishes security metrics and describes possible attacks on real-life bioassays. Furthermore, we study the use of machine learning (ML) techniques to detect and classify attacks based on the golden and real-time biochip state. In order to boost the classifier's performance, we propose a smart checkpointing mechanism. Experimental results are presented to showcase: 1) best-fit ML model classifier; 2) performance of different tradeoffs in checkpointing; and 3) effectiveness of the proposed smart checkpointing scheme.
doi_str_mv 10.1109/TVLSI.2019.2924915
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2019_2924915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8764604</ieee_id><sourcerecordid>2317728818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-632c3077d512844e8265bd47a19b0393b7d18da6767f17ef45eb94aea65a485d3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-Ab008bzY6XePQERJMJqAXJvutqtLFhdbFsO_dxHiXGYO7zOTeRC6BTIAIOZhsZzNpwNKwAyoodyAOEM9EEJlpqvzbiaSZZoCuURXKa0IAc4N6aHRovlx0eN5KNoY8EtVxKas28pXBZ60db3Hb7H5iG69dnkd8NLVu4CHMbo9HlVN8Vlt0jW6KF2dws2p99H75HExfs5mr0_T8XCWFYyZbSYZLRhRygugmvOgqRS558qByQkzLFcetHdSSVWCCiUXITfcBSeF41p41kf3x72b2Hy3IW3tqmnjV3fSUgZKUa1Bdyl6THWPpBRDaTexWru4t0DswZX9c2UPruzJVQfdHaEqhPAPaCW5JJz9Av77ZIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317728818</pqid></control><display><type>article</type><title>Toward Secure Microfluidic Fully Programmable Valve Array Biochips</title><source>IEEE Electronic Library (IEL)</source><creator>Shayan, Mohammed ; Bhattacharjee, Sukanta ; Song, Yong-Ak ; Chakrabarty, Krishnendu ; Karri, Ramesh</creator><creatorcontrib>Shayan, Mohammed ; Bhattacharjee, Sukanta ; Song, Yong-Ak ; Chakrabarty, Krishnendu ; Karri, Ramesh</creatorcontrib><description>The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analysis. Since these applications are safety critical, addressing security concerns is vital for the success and adoption of FPVAs. This study evaluates the security of FPVA biochips. We show that FPVAs are vulnerable to malicious operations similar to digital and flow-based microfluidic biochips. FPVAs are further prone to new classes of attacks-tunneling and deliberate aging. This study establishes security metrics and describes possible attacks on real-life bioassays. Furthermore, we study the use of machine learning (ML) techniques to detect and classify attacks based on the golden and real-time biochip state. In order to boost the classifier's performance, we propose a smart checkpointing mechanism. Experimental results are presented to showcase: 1) best-fit ML model classifier; 2) performance of different tradeoffs in checkpointing; and 3) effectiveness of the proposed smart checkpointing scheme.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2019.2924915</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biochips ; Biological system modeling ; Checkpointing ; Classifiers ; Computer security ; Field programmable gate arrays ; Integrated circuits ; Machine learning ; Microfluidics ; microvalves ; Safety critical ; Security ; Sensors ; statistical learning ; Valves ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2019-12, Vol.27 (12), p.2755-2766</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-632c3077d512844e8265bd47a19b0393b7d18da6767f17ef45eb94aea65a485d3</citedby><cites>FETCH-LOGICAL-c339t-632c3077d512844e8265bd47a19b0393b7d18da6767f17ef45eb94aea65a485d3</cites><orcidid>0000-0003-4341-5380 ; 0000-0001-5454-1927 ; 0000-0001-7989-5617 ; 0000-0003-4475-6435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8764604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8764604$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shayan, Mohammed</creatorcontrib><creatorcontrib>Bhattacharjee, Sukanta</creatorcontrib><creatorcontrib>Song, Yong-Ak</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><creatorcontrib>Karri, Ramesh</creatorcontrib><title>Toward Secure Microfluidic Fully Programmable Valve Array Biochips</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analysis. Since these applications are safety critical, addressing security concerns is vital for the success and adoption of FPVAs. This study evaluates the security of FPVA biochips. We show that FPVAs are vulnerable to malicious operations similar to digital and flow-based microfluidic biochips. FPVAs are further prone to new classes of attacks-tunneling and deliberate aging. This study establishes security metrics and describes possible attacks on real-life bioassays. Furthermore, we study the use of machine learning (ML) techniques to detect and classify attacks based on the golden and real-time biochip state. In order to boost the classifier's performance, we propose a smart checkpointing mechanism. Experimental results are presented to showcase: 1) best-fit ML model classifier; 2) performance of different tradeoffs in checkpointing; and 3) effectiveness of the proposed smart checkpointing scheme.</description><subject>Biochips</subject><subject>Biological system modeling</subject><subject>Checkpointing</subject><subject>Classifiers</subject><subject>Computer security</subject><subject>Field programmable gate arrays</subject><subject>Integrated circuits</subject><subject>Machine learning</subject><subject>Microfluidics</subject><subject>microvalves</subject><subject>Safety critical</subject><subject>Security</subject><subject>Sensors</subject><subject>statistical learning</subject><subject>Valves</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-Ab008bzY6XePQERJMJqAXJvutqtLFhdbFsO_dxHiXGYO7zOTeRC6BTIAIOZhsZzNpwNKwAyoodyAOEM9EEJlpqvzbiaSZZoCuURXKa0IAc4N6aHRovlx0eN5KNoY8EtVxKas28pXBZ60db3Hb7H5iG69dnkd8NLVu4CHMbo9HlVN8Vlt0jW6KF2dws2p99H75HExfs5mr0_T8XCWFYyZbSYZLRhRygugmvOgqRS558qByQkzLFcetHdSSVWCCiUXITfcBSeF41p41kf3x72b2Hy3IW3tqmnjV3fSUgZKUa1Bdyl6THWPpBRDaTexWru4t0DswZX9c2UPruzJVQfdHaEqhPAPaCW5JJz9Av77ZIs</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Shayan, Mohammed</creator><creator>Bhattacharjee, Sukanta</creator><creator>Song, Yong-Ak</creator><creator>Chakrabarty, Krishnendu</creator><creator>Karri, Ramesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4341-5380</orcidid><orcidid>https://orcid.org/0000-0001-5454-1927</orcidid><orcidid>https://orcid.org/0000-0001-7989-5617</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid></search><sort><creationdate>20191201</creationdate><title>Toward Secure Microfluidic Fully Programmable Valve Array Biochips</title><author>Shayan, Mohammed ; Bhattacharjee, Sukanta ; Song, Yong-Ak ; Chakrabarty, Krishnendu ; Karri, Ramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-632c3077d512844e8265bd47a19b0393b7d18da6767f17ef45eb94aea65a485d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biochips</topic><topic>Biological system modeling</topic><topic>Checkpointing</topic><topic>Classifiers</topic><topic>Computer security</topic><topic>Field programmable gate arrays</topic><topic>Integrated circuits</topic><topic>Machine learning</topic><topic>Microfluidics</topic><topic>microvalves</topic><topic>Safety critical</topic><topic>Security</topic><topic>Sensors</topic><topic>statistical learning</topic><topic>Valves</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shayan, Mohammed</creatorcontrib><creatorcontrib>Bhattacharjee, Sukanta</creatorcontrib><creatorcontrib>Song, Yong-Ak</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><creatorcontrib>Karri, Ramesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shayan, Mohammed</au><au>Bhattacharjee, Sukanta</au><au>Song, Yong-Ak</au><au>Chakrabarty, Krishnendu</au><au>Karri, Ramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Secure Microfluidic Fully Programmable Valve Array Biochips</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>27</volume><issue>12</issue><spage>2755</spage><epage>2766</epage><pages>2755-2766</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analysis. Since these applications are safety critical, addressing security concerns is vital for the success and adoption of FPVAs. This study evaluates the security of FPVA biochips. We show that FPVAs are vulnerable to malicious operations similar to digital and flow-based microfluidic biochips. FPVAs are further prone to new classes of attacks-tunneling and deliberate aging. This study establishes security metrics and describes possible attacks on real-life bioassays. Furthermore, we study the use of machine learning (ML) techniques to detect and classify attacks based on the golden and real-time biochip state. In order to boost the classifier's performance, we propose a smart checkpointing mechanism. Experimental results are presented to showcase: 1) best-fit ML model classifier; 2) performance of different tradeoffs in checkpointing; and 3) effectiveness of the proposed smart checkpointing scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2019.2924915</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4341-5380</orcidid><orcidid>https://orcid.org/0000-0001-5454-1927</orcidid><orcidid>https://orcid.org/0000-0001-7989-5617</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2019-12, Vol.27 (12), p.2755-2766
issn 1063-8210
1557-9999
language eng
recordid cdi_crossref_primary_10_1109_TVLSI_2019_2924915
source IEEE Electronic Library (IEL)
subjects Biochips
Biological system modeling
Checkpointing
Classifiers
Computer security
Field programmable gate arrays
Integrated circuits
Machine learning
Microfluidics
microvalves
Safety critical
Security
Sensors
statistical learning
Valves
Very large scale integration
title Toward Secure Microfluidic Fully Programmable Valve Array Biochips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Secure%20Microfluidic%20Fully%20Programmable%20Valve%20Array%20Biochips&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Shayan,%20Mohammed&rft.date=2019-12-01&rft.volume=27&rft.issue=12&rft.spage=2755&rft.epage=2766&rft.pages=2755-2766&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2019.2924915&rft_dat=%3Cproquest_RIE%3E2317728818%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317728818&rft_id=info:pmid/&rft_ieee_id=8764604&rfr_iscdi=true