Toward Secure Microfluidic Fully Programmable Valve Array Biochips
The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analy...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2019-12, Vol.27 (12), p.2755-2766 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2766 |
---|---|
container_issue | 12 |
container_start_page | 2755 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 27 |
creator | Shayan, Mohammed Bhattacharjee, Sukanta Song, Yong-Ak Chakrabarty, Krishnendu Karri, Ramesh |
description | The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analysis. Since these applications are safety critical, addressing security concerns is vital for the success and adoption of FPVAs. This study evaluates the security of FPVA biochips. We show that FPVAs are vulnerable to malicious operations similar to digital and flow-based microfluidic biochips. FPVAs are further prone to new classes of attacks-tunneling and deliberate aging. This study establishes security metrics and describes possible attacks on real-life bioassays. Furthermore, we study the use of machine learning (ML) techniques to detect and classify attacks based on the golden and real-time biochip state. In order to boost the classifier's performance, we propose a smart checkpointing mechanism. Experimental results are presented to showcase: 1) best-fit ML model classifier; 2) performance of different tradeoffs in checkpointing; and 3) effectiveness of the proposed smart checkpointing scheme. |
doi_str_mv | 10.1109/TVLSI.2019.2924915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2019_2924915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8764604</ieee_id><sourcerecordid>2317728818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-632c3077d512844e8265bd47a19b0393b7d18da6767f17ef45eb94aea65a485d3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-Ab008bzY6XePQERJMJqAXJvutqtLFhdbFsO_dxHiXGYO7zOTeRC6BTIAIOZhsZzNpwNKwAyoodyAOEM9EEJlpqvzbiaSZZoCuURXKa0IAc4N6aHRovlx0eN5KNoY8EtVxKas28pXBZ60db3Hb7H5iG69dnkd8NLVu4CHMbo9HlVN8Vlt0jW6KF2dws2p99H75HExfs5mr0_T8XCWFYyZbSYZLRhRygugmvOgqRS558qByQkzLFcetHdSSVWCCiUXITfcBSeF41p41kf3x72b2Hy3IW3tqmnjV3fSUgZKUa1Bdyl6THWPpBRDaTexWru4t0DswZX9c2UPruzJVQfdHaEqhPAPaCW5JJz9Av77ZIs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317728818</pqid></control><display><type>article</type><title>Toward Secure Microfluidic Fully Programmable Valve Array Biochips</title><source>IEEE Electronic Library (IEL)</source><creator>Shayan, Mohammed ; Bhattacharjee, Sukanta ; Song, Yong-Ak ; Chakrabarty, Krishnendu ; Karri, Ramesh</creator><creatorcontrib>Shayan, Mohammed ; Bhattacharjee, Sukanta ; Song, Yong-Ak ; Chakrabarty, Krishnendu ; Karri, Ramesh</creatorcontrib><description>The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analysis. Since these applications are safety critical, addressing security concerns is vital for the success and adoption of FPVAs. This study evaluates the security of FPVA biochips. We show that FPVAs are vulnerable to malicious operations similar to digital and flow-based microfluidic biochips. FPVAs are further prone to new classes of attacks-tunneling and deliberate aging. This study establishes security metrics and describes possible attacks on real-life bioassays. Furthermore, we study the use of machine learning (ML) techniques to detect and classify attacks based on the golden and real-time biochip state. In order to boost the classifier's performance, we propose a smart checkpointing mechanism. Experimental results are presented to showcase: 1) best-fit ML model classifier; 2) performance of different tradeoffs in checkpointing; and 3) effectiveness of the proposed smart checkpointing scheme.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2019.2924915</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biochips ; Biological system modeling ; Checkpointing ; Classifiers ; Computer security ; Field programmable gate arrays ; Integrated circuits ; Machine learning ; Microfluidics ; microvalves ; Safety critical ; Security ; Sensors ; statistical learning ; Valves ; Very large scale integration</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2019-12, Vol.27 (12), p.2755-2766</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-632c3077d512844e8265bd47a19b0393b7d18da6767f17ef45eb94aea65a485d3</citedby><cites>FETCH-LOGICAL-c339t-632c3077d512844e8265bd47a19b0393b7d18da6767f17ef45eb94aea65a485d3</cites><orcidid>0000-0003-4341-5380 ; 0000-0001-5454-1927 ; 0000-0001-7989-5617 ; 0000-0003-4475-6435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8764604$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8764604$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shayan, Mohammed</creatorcontrib><creatorcontrib>Bhattacharjee, Sukanta</creatorcontrib><creatorcontrib>Song, Yong-Ak</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><creatorcontrib>Karri, Ramesh</creatorcontrib><title>Toward Secure Microfluidic Fully Programmable Valve Array Biochips</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analysis. Since these applications are safety critical, addressing security concerns is vital for the success and adoption of FPVAs. This study evaluates the security of FPVA biochips. We show that FPVAs are vulnerable to malicious operations similar to digital and flow-based microfluidic biochips. FPVAs are further prone to new classes of attacks-tunneling and deliberate aging. This study establishes security metrics and describes possible attacks on real-life bioassays. Furthermore, we study the use of machine learning (ML) techniques to detect and classify attacks based on the golden and real-time biochip state. In order to boost the classifier's performance, we propose a smart checkpointing mechanism. Experimental results are presented to showcase: 1) best-fit ML model classifier; 2) performance of different tradeoffs in checkpointing; and 3) effectiveness of the proposed smart checkpointing scheme.</description><subject>Biochips</subject><subject>Biological system modeling</subject><subject>Checkpointing</subject><subject>Classifiers</subject><subject>Computer security</subject><subject>Field programmable gate arrays</subject><subject>Integrated circuits</subject><subject>Machine learning</subject><subject>Microfluidics</subject><subject>microvalves</subject><subject>Safety critical</subject><subject>Security</subject><subject>Sensors</subject><subject>statistical learning</subject><subject>Valves</subject><subject>Very large scale integration</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-Ab008bzY6XePQERJMJqAXJvutqtLFhdbFsO_dxHiXGYO7zOTeRC6BTIAIOZhsZzNpwNKwAyoodyAOEM9EEJlpqvzbiaSZZoCuURXKa0IAc4N6aHRovlx0eN5KNoY8EtVxKas28pXBZ60db3Hb7H5iG69dnkd8NLVu4CHMbo9HlVN8Vlt0jW6KF2dws2p99H75HExfs5mr0_T8XCWFYyZbSYZLRhRygugmvOgqRS558qByQkzLFcetHdSSVWCCiUXITfcBSeF41p41kf3x72b2Hy3IW3tqmnjV3fSUgZKUa1Bdyl6THWPpBRDaTexWru4t0DswZX9c2UPruzJVQfdHaEqhPAPaCW5JJz9Av77ZIs</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Shayan, Mohammed</creator><creator>Bhattacharjee, Sukanta</creator><creator>Song, Yong-Ak</creator><creator>Chakrabarty, Krishnendu</creator><creator>Karri, Ramesh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4341-5380</orcidid><orcidid>https://orcid.org/0000-0001-5454-1927</orcidid><orcidid>https://orcid.org/0000-0001-7989-5617</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid></search><sort><creationdate>20191201</creationdate><title>Toward Secure Microfluidic Fully Programmable Valve Array Biochips</title><author>Shayan, Mohammed ; Bhattacharjee, Sukanta ; Song, Yong-Ak ; Chakrabarty, Krishnendu ; Karri, Ramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-632c3077d512844e8265bd47a19b0393b7d18da6767f17ef45eb94aea65a485d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biochips</topic><topic>Biological system modeling</topic><topic>Checkpointing</topic><topic>Classifiers</topic><topic>Computer security</topic><topic>Field programmable gate arrays</topic><topic>Integrated circuits</topic><topic>Machine learning</topic><topic>Microfluidics</topic><topic>microvalves</topic><topic>Safety critical</topic><topic>Security</topic><topic>Sensors</topic><topic>statistical learning</topic><topic>Valves</topic><topic>Very large scale integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shayan, Mohammed</creatorcontrib><creatorcontrib>Bhattacharjee, Sukanta</creatorcontrib><creatorcontrib>Song, Yong-Ak</creatorcontrib><creatorcontrib>Chakrabarty, Krishnendu</creatorcontrib><creatorcontrib>Karri, Ramesh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shayan, Mohammed</au><au>Bhattacharjee, Sukanta</au><au>Song, Yong-Ak</au><au>Chakrabarty, Krishnendu</au><au>Karri, Ramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Secure Microfluidic Fully Programmable Valve Array Biochips</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>27</volume><issue>12</issue><spage>2755</spage><epage>2766</epage><pages>2755-2766</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>The fully programmable valve array (FPVA) is a general-purpose programmable flow-based microfluidic platform, akin to the VLSI field-programmable gate array (FPGA). FPVAs are dynamically reconfigurable and, hence, are suitable in a broad spectrum of applications involving immunoassays and cell analysis. Since these applications are safety critical, addressing security concerns is vital for the success and adoption of FPVAs. This study evaluates the security of FPVA biochips. We show that FPVAs are vulnerable to malicious operations similar to digital and flow-based microfluidic biochips. FPVAs are further prone to new classes of attacks-tunneling and deliberate aging. This study establishes security metrics and describes possible attacks on real-life bioassays. Furthermore, we study the use of machine learning (ML) techniques to detect and classify attacks based on the golden and real-time biochip state. In order to boost the classifier's performance, we propose a smart checkpointing mechanism. Experimental results are presented to showcase: 1) best-fit ML model classifier; 2) performance of different tradeoffs in checkpointing; and 3) effectiveness of the proposed smart checkpointing scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2019.2924915</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4341-5380</orcidid><orcidid>https://orcid.org/0000-0001-5454-1927</orcidid><orcidid>https://orcid.org/0000-0001-7989-5617</orcidid><orcidid>https://orcid.org/0000-0003-4475-6435</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2019-12, Vol.27 (12), p.2755-2766 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVLSI_2019_2924915 |
source | IEEE Electronic Library (IEL) |
subjects | Biochips Biological system modeling Checkpointing Classifiers Computer security Field programmable gate arrays Integrated circuits Machine learning Microfluidics microvalves Safety critical Security Sensors statistical learning Valves Very large scale integration |
title | Toward Secure Microfluidic Fully Programmable Valve Array Biochips |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A32%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Secure%20Microfluidic%20Fully%20Programmable%20Valve%20Array%20Biochips&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Shayan,%20Mohammed&rft.date=2019-12-01&rft.volume=27&rft.issue=12&rft.spage=2755&rft.epage=2766&rft.pages=2755-2766&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2019.2924915&rft_dat=%3Cproquest_RIE%3E2317728818%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317728818&rft_id=info:pmid/&rft_ieee_id=8764604&rfr_iscdi=true |