Autotuning of Integrated Inductive Voltage Regulator Using On-Chip Delay Sensor to Tolerate Process and Passive Variations

This paper demonstrates autotuning of the coefficients of the feedback loop of an inductive integrated voltage regulator (IVR) using an on-chip delay sensor. The proposed approach improves the effective performance of the digital core under variations in the on-die/package integrated passives and tr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2019-08, Vol.27 (8), p.1768-1778
Hauptverfasser: Chekuri, Venkata Chaitanya Krishna, Kar, Monodeep, Singh, Arvind, Mukhopadhyay, Saibal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1778
container_issue 8
container_start_page 1768
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 27
creator Chekuri, Venkata Chaitanya Krishna
Kar, Monodeep
Singh, Arvind
Mukhopadhyay, Saibal
description This paper demonstrates autotuning of the coefficients of the feedback loop of an inductive integrated voltage regulator (IVR) using an on-chip delay sensor. The proposed approach improves the effective performance of the digital core under variations in the on-die/package integrated passives and transistor process. A 130-nm CMOS test-chip is designed containing a multisampled 125-MHz IVR with a wirebond inductor, on-die capacitor, and all-digital proportional-integral-differential (PID) controller powering a parallel Advanced Encryption Standard (AES) engine. The autotuning is performed using a Vernier delay line based on-chip delay sensor and an all-digital tuning engine. The measurement results demonstrate up to 5.2% improvement in the maximum operating frequency of the AES core using performance-based autotuning.
doi_str_mv 10.1109/TVLSI.2019.2912141
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2019_2912141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8718532</ieee_id><sourcerecordid>2264437776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-414b9e8e445648ab4d77bfb2dca8ae143333100a7ddb00aed0e91fc6236dd0bb3</originalsourceid><addsrcrecordid>eNo9UNtKAzEUXETBWv0BfQn4vDXJZi95LPVWKLTYy2vIbs7WLWtSk6xQv95sW5yXGTgzc2Ci6J7gESGYP602s-V0RDHhI8oJJYxcRAOSpnnMAy6DxlkSF5Tg6-jGuR3GhDGOB9HvuPPGd7rRW2RqNNUetlZ6UEGqrvLND6CNab3cAvqAbddKbyxau94_1_Hks9mjZ2jlAS1Bu3DyBq1MC30HWlhTgXNIaoUW0rljmbSN9I3R7ja6qmXr4O7Mw2j9-rKavMez-dt0Mp7FFeWpjxlhJYcCGEszVsiSqTwv65KqShYSCEsCCMYyV6oMBAoDJ3WV0SRTCpdlMoweT717a747cF7sTGd1eCkozRhL8jzPgoueXJU1zlmoxd42X9IeBMGi31gcNxb9xuK8cQg9nEINAPwHipwUaUKTP19lek4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2264437776</pqid></control><display><type>article</type><title>Autotuning of Integrated Inductive Voltage Regulator Using On-Chip Delay Sensor to Tolerate Process and Passive Variations</title><source>IEEE Electronic Library (IEL)</source><creator>Chekuri, Venkata Chaitanya Krishna ; Kar, Monodeep ; Singh, Arvind ; Mukhopadhyay, Saibal</creator><creatorcontrib>Chekuri, Venkata Chaitanya Krishna ; Kar, Monodeep ; Singh, Arvind ; Mukhopadhyay, Saibal</creatorcontrib><description>This paper demonstrates autotuning of the coefficients of the feedback loop of an inductive integrated voltage regulator (IVR) using an on-chip delay sensor. The proposed approach improves the effective performance of the digital core under variations in the on-die/package integrated passives and transistor process. A 130-nm CMOS test-chip is designed containing a multisampled 125-MHz IVR with a wirebond inductor, on-die capacitor, and all-digital proportional-integral-differential (PID) controller powering a parallel Advanced Encryption Standard (AES) engine. The autotuning is performed using a Vernier delay line based on-chip delay sensor and an all-digital tuning engine. The measurement results demonstrate up to 5.2% improvement in the maximum operating frequency of the AES core using performance-based autotuning.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2019.2912141</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Auto tuning ; CMOS ; Control theory ; Delay lines ; delay-based tuning ; Delays ; dynamic voltage frequency scaling (DVFS) ; Encryption ; Engines ; Feedback loops ; IVR ; performance-based tuning ; Proportional integral derivative ; Regulators ; Sensors ; System-on-chip ; Transient analysis ; Tuning ; Vernier delay chains ; Voltage ; Voltage control ; Voltage regulators</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2019-08, Vol.27 (8), p.1768-1778</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-414b9e8e445648ab4d77bfb2dca8ae143333100a7ddb00aed0e91fc6236dd0bb3</citedby><cites>FETCH-LOGICAL-c295t-414b9e8e445648ab4d77bfb2dca8ae143333100a7ddb00aed0e91fc6236dd0bb3</cites><orcidid>0000-0002-3175-3350 ; 0000-0001-5238-7196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8718532$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8718532$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chekuri, Venkata Chaitanya Krishna</creatorcontrib><creatorcontrib>Kar, Monodeep</creatorcontrib><creatorcontrib>Singh, Arvind</creatorcontrib><creatorcontrib>Mukhopadhyay, Saibal</creatorcontrib><title>Autotuning of Integrated Inductive Voltage Regulator Using On-Chip Delay Sensor to Tolerate Process and Passive Variations</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>This paper demonstrates autotuning of the coefficients of the feedback loop of an inductive integrated voltage regulator (IVR) using an on-chip delay sensor. The proposed approach improves the effective performance of the digital core under variations in the on-die/package integrated passives and transistor process. A 130-nm CMOS test-chip is designed containing a multisampled 125-MHz IVR with a wirebond inductor, on-die capacitor, and all-digital proportional-integral-differential (PID) controller powering a parallel Advanced Encryption Standard (AES) engine. The autotuning is performed using a Vernier delay line based on-chip delay sensor and an all-digital tuning engine. The measurement results demonstrate up to 5.2% improvement in the maximum operating frequency of the AES core using performance-based autotuning.</description><subject>Auto tuning</subject><subject>CMOS</subject><subject>Control theory</subject><subject>Delay lines</subject><subject>delay-based tuning</subject><subject>Delays</subject><subject>dynamic voltage frequency scaling (DVFS)</subject><subject>Encryption</subject><subject>Engines</subject><subject>Feedback loops</subject><subject>IVR</subject><subject>performance-based tuning</subject><subject>Proportional integral derivative</subject><subject>Regulators</subject><subject>Sensors</subject><subject>System-on-chip</subject><subject>Transient analysis</subject><subject>Tuning</subject><subject>Vernier delay chains</subject><subject>Voltage</subject><subject>Voltage control</subject><subject>Voltage regulators</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UNtKAzEUXETBWv0BfQn4vDXJZi95LPVWKLTYy2vIbs7WLWtSk6xQv95sW5yXGTgzc2Ci6J7gESGYP602s-V0RDHhI8oJJYxcRAOSpnnMAy6DxlkSF5Tg6-jGuR3GhDGOB9HvuPPGd7rRW2RqNNUetlZ6UEGqrvLND6CNab3cAvqAbddKbyxau94_1_Hks9mjZ2jlAS1Bu3DyBq1MC30HWlhTgXNIaoUW0rljmbSN9I3R7ja6qmXr4O7Mw2j9-rKavMez-dt0Mp7FFeWpjxlhJYcCGEszVsiSqTwv65KqShYSCEsCCMYyV6oMBAoDJ3WV0SRTCpdlMoweT717a747cF7sTGd1eCkozRhL8jzPgoueXJU1zlmoxd42X9IeBMGi31gcNxb9xuK8cQg9nEINAPwHipwUaUKTP19lek4</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chekuri, Venkata Chaitanya Krishna</creator><creator>Kar, Monodeep</creator><creator>Singh, Arvind</creator><creator>Mukhopadhyay, Saibal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3175-3350</orcidid><orcidid>https://orcid.org/0000-0001-5238-7196</orcidid></search><sort><creationdate>20190801</creationdate><title>Autotuning of Integrated Inductive Voltage Regulator Using On-Chip Delay Sensor to Tolerate Process and Passive Variations</title><author>Chekuri, Venkata Chaitanya Krishna ; Kar, Monodeep ; Singh, Arvind ; Mukhopadhyay, Saibal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-414b9e8e445648ab4d77bfb2dca8ae143333100a7ddb00aed0e91fc6236dd0bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Auto tuning</topic><topic>CMOS</topic><topic>Control theory</topic><topic>Delay lines</topic><topic>delay-based tuning</topic><topic>Delays</topic><topic>dynamic voltage frequency scaling (DVFS)</topic><topic>Encryption</topic><topic>Engines</topic><topic>Feedback loops</topic><topic>IVR</topic><topic>performance-based tuning</topic><topic>Proportional integral derivative</topic><topic>Regulators</topic><topic>Sensors</topic><topic>System-on-chip</topic><topic>Transient analysis</topic><topic>Tuning</topic><topic>Vernier delay chains</topic><topic>Voltage</topic><topic>Voltage control</topic><topic>Voltage regulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chekuri, Venkata Chaitanya Krishna</creatorcontrib><creatorcontrib>Kar, Monodeep</creatorcontrib><creatorcontrib>Singh, Arvind</creatorcontrib><creatorcontrib>Mukhopadhyay, Saibal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chekuri, Venkata Chaitanya Krishna</au><au>Kar, Monodeep</au><au>Singh, Arvind</au><au>Mukhopadhyay, Saibal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autotuning of Integrated Inductive Voltage Regulator Using On-Chip Delay Sensor to Tolerate Process and Passive Variations</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>27</volume><issue>8</issue><spage>1768</spage><epage>1778</epage><pages>1768-1778</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>This paper demonstrates autotuning of the coefficients of the feedback loop of an inductive integrated voltage regulator (IVR) using an on-chip delay sensor. The proposed approach improves the effective performance of the digital core under variations in the on-die/package integrated passives and transistor process. A 130-nm CMOS test-chip is designed containing a multisampled 125-MHz IVR with a wirebond inductor, on-die capacitor, and all-digital proportional-integral-differential (PID) controller powering a parallel Advanced Encryption Standard (AES) engine. The autotuning is performed using a Vernier delay line based on-chip delay sensor and an all-digital tuning engine. The measurement results demonstrate up to 5.2% improvement in the maximum operating frequency of the AES core using performance-based autotuning.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVLSI.2019.2912141</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3175-3350</orcidid><orcidid>https://orcid.org/0000-0001-5238-7196</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2019-08, Vol.27 (8), p.1768-1778
issn 1063-8210
1557-9999
language eng
recordid cdi_crossref_primary_10_1109_TVLSI_2019_2912141
source IEEE Electronic Library (IEL)
subjects Auto tuning
CMOS
Control theory
Delay lines
delay-based tuning
Delays
dynamic voltage frequency scaling (DVFS)
Encryption
Engines
Feedback loops
IVR
performance-based tuning
Proportional integral derivative
Regulators
Sensors
System-on-chip
Transient analysis
Tuning
Vernier delay chains
Voltage
Voltage control
Voltage regulators
title Autotuning of Integrated Inductive Voltage Regulator Using On-Chip Delay Sensor to Tolerate Process and Passive Variations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A59%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autotuning%20of%20Integrated%20Inductive%20Voltage%20Regulator%20Using%20On-Chip%20Delay%20Sensor%20to%20Tolerate%20Process%20and%20Passive%20Variations&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Chekuri,%20Venkata%20Chaitanya%20Krishna&rft.date=2019-08-01&rft.volume=27&rft.issue=8&rft.spage=1768&rft.epage=1778&rft.pages=1768-1778&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2019.2912141&rft_dat=%3Cproquest_RIE%3E2264437776%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2264437776&rft_id=info:pmid/&rft_ieee_id=8718532&rfr_iscdi=true