HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs
Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on very large scale integration (VLSI) systems 2018-01, Vol.26 (1), p.168-181 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 181 |
---|---|
container_issue | 1 |
container_start_page | 168 |
container_title | IEEE transactions on very large scale integration (VLSI) systems |
container_volume | 26 |
creator | Chittamuru, Sai Vineel Reddy Thakkar, Ishan G. Pasricha, Sudeep |
description | Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wavelength division multiplexing (DWDM) for signal traversal and microring resonators (MRs) for signal modulation. Unfortunately, DWDM increases susceptibility to intermodulation (IM) and off-resonance filtering effects, which reduce optical signal-to-noise ratio (OSNR) for photonic data transfers. Additionally, process variations (PVs) induce variations in the width and thickness of MRs causing resonance wavelength shifts, which further reduce OSNR, and create communication errors. This paper proposes a novel cross-layer framework called HYDRA to mitigate heterodyne crosstalk due to PVs, off-resonance filtering, and IM effects in PNoCs. The framework consists of two device-level mechanisms and a circuit-level mechanism to improve heterodyne crosstalk resilience in PNoCs. Simulation results on three PNoC architectures indicate that HYDRA can improve the worst case OSNR by up to 5.3× and significantly enhance the reliability of DWDM-based PNoC architectures. |
doi_str_mv | 10.1109/TVLSI.2017.2749967 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2017_2749967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8039439</ieee_id><sourcerecordid>10_1109_TVLSI_2017_2749967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-3743b9d6240651ae0e34a158c6e881cebbd6614fc9a434e4f425534c9cadda963</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EEqVwAdj4Ail27DgxuyoFWqn8qBQQq8ixJ61piZFtFr09Ca2YzYy-0RtpHkKXlIwoJfJ6-TZ_mY1SQvNRmnMpRX6EBjTL8kR2ddzNRLCkSCk5RWchfBJCOZdkgDbTj8lifIOnEME7s2sBl96FENV2gx9stCsVrWvxu41rPHE_9Ra6WHvnbbvCCwiuVdH5gFVr8ERFhW9b7Uy_bJzHz2sXXWs1fnRlOEcnjdoGuDj0IXq9u12W02T-dD8rx_NEM0pjwnLOamlEyonIqAICjCuaFVpAUVANdW2EoLzRUnHGgTc8zTLGtdTKGCUFG6J0f1f3n3hoqm9vv5TfVZRUva7qT1fV66oOujroag9ZAPgHCsIkZ5L9AoNsZ7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs</title><source>IEEE Electronic Library (IEL)</source><creator>Chittamuru, Sai Vineel Reddy ; Thakkar, Ishan G. ; Pasricha, Sudeep</creator><creatorcontrib>Chittamuru, Sai Vineel Reddy ; Thakkar, Ishan G. ; Pasricha, Sudeep</creatorcontrib><description>Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wavelength division multiplexing (DWDM) for signal traversal and microring resonators (MRs) for signal modulation. Unfortunately, DWDM increases susceptibility to intermodulation (IM) and off-resonance filtering effects, which reduce optical signal-to-noise ratio (OSNR) for photonic data transfers. Additionally, process variations (PVs) induce variations in the width and thickness of MRs causing resonance wavelength shifts, which further reduce OSNR, and create communication errors. This paper proposes a novel cross-layer framework called HYDRA to mitigate heterodyne crosstalk due to PVs, off-resonance filtering, and IM effects in PNoCs. The framework consists of two device-level mechanisms and a circuit-level mechanism to improve heterodyne crosstalk resilience in PNoCs. Simulation results on three PNoC architectures indicate that HYDRA can improve the worst case OSNR by up to 5.3× and significantly enhance the reliability of DWDM-based PNoC architectures.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2017.2749967</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Crosstalk ; Crosstalk noise ; Detectors ; Optical noise ; Optical waveguides ; photonic NoCs (PNoCs) ; Photonics ; process variations (PVs) ; Signal to noise ratio ; Wavelength division multiplexing</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2018-01, Vol.26 (1), p.168-181</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-3743b9d6240651ae0e34a158c6e881cebbd6614fc9a434e4f425534c9cadda963</citedby><cites>FETCH-LOGICAL-c311t-3743b9d6240651ae0e34a158c6e881cebbd6614fc9a434e4f425534c9cadda963</cites><orcidid>0000-0002-7289-1530 ; 0000-0002-0846-0066 ; 0000-0002-0918-1755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8039439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8039439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chittamuru, Sai Vineel Reddy</creatorcontrib><creatorcontrib>Thakkar, Ishan G.</creatorcontrib><creatorcontrib>Pasricha, Sudeep</creatorcontrib><title>HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wavelength division multiplexing (DWDM) for signal traversal and microring resonators (MRs) for signal modulation. Unfortunately, DWDM increases susceptibility to intermodulation (IM) and off-resonance filtering effects, which reduce optical signal-to-noise ratio (OSNR) for photonic data transfers. Additionally, process variations (PVs) induce variations in the width and thickness of MRs causing resonance wavelength shifts, which further reduce OSNR, and create communication errors. This paper proposes a novel cross-layer framework called HYDRA to mitigate heterodyne crosstalk due to PVs, off-resonance filtering, and IM effects in PNoCs. The framework consists of two device-level mechanisms and a circuit-level mechanism to improve heterodyne crosstalk resilience in PNoCs. Simulation results on three PNoC architectures indicate that HYDRA can improve the worst case OSNR by up to 5.3× and significantly enhance the reliability of DWDM-based PNoC architectures.</description><subject>Crosstalk</subject><subject>Crosstalk noise</subject><subject>Detectors</subject><subject>Optical noise</subject><subject>Optical waveguides</subject><subject>photonic NoCs (PNoCs)</subject><subject>Photonics</subject><subject>process variations (PVs)</subject><subject>Signal to noise ratio</subject><subject>Wavelength division multiplexing</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1OwzAQRi0EEqVwAdj4Ail27DgxuyoFWqn8qBQQq8ixJ61piZFtFr09Ca2YzYy-0RtpHkKXlIwoJfJ6-TZ_mY1SQvNRmnMpRX6EBjTL8kR2ddzNRLCkSCk5RWchfBJCOZdkgDbTj8lifIOnEME7s2sBl96FENV2gx9stCsVrWvxu41rPHE_9Ra6WHvnbbvCCwiuVdH5gFVr8ERFhW9b7Uy_bJzHz2sXXWs1fnRlOEcnjdoGuDj0IXq9u12W02T-dD8rx_NEM0pjwnLOamlEyonIqAICjCuaFVpAUVANdW2EoLzRUnHGgTc8zTLGtdTKGCUFG6J0f1f3n3hoqm9vv5TfVZRUva7qT1fV66oOujroag9ZAPgHCsIkZ5L9AoNsZ7s</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Chittamuru, Sai Vineel Reddy</creator><creator>Thakkar, Ishan G.</creator><creator>Pasricha, Sudeep</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7289-1530</orcidid><orcidid>https://orcid.org/0000-0002-0846-0066</orcidid><orcidid>https://orcid.org/0000-0002-0918-1755</orcidid></search><sort><creationdate>201801</creationdate><title>HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs</title><author>Chittamuru, Sai Vineel Reddy ; Thakkar, Ishan G. ; Pasricha, Sudeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-3743b9d6240651ae0e34a158c6e881cebbd6614fc9a434e4f425534c9cadda963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crosstalk</topic><topic>Crosstalk noise</topic><topic>Detectors</topic><topic>Optical noise</topic><topic>Optical waveguides</topic><topic>photonic NoCs (PNoCs)</topic><topic>Photonics</topic><topic>process variations (PVs)</topic><topic>Signal to noise ratio</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chittamuru, Sai Vineel Reddy</creatorcontrib><creatorcontrib>Thakkar, Ishan G.</creatorcontrib><creatorcontrib>Pasricha, Sudeep</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chittamuru, Sai Vineel Reddy</au><au>Thakkar, Ishan G.</au><au>Pasricha, Sudeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2018-01</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>168</spage><epage>181</epage><pages>168-181</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wavelength division multiplexing (DWDM) for signal traversal and microring resonators (MRs) for signal modulation. Unfortunately, DWDM increases susceptibility to intermodulation (IM) and off-resonance filtering effects, which reduce optical signal-to-noise ratio (OSNR) for photonic data transfers. Additionally, process variations (PVs) induce variations in the width and thickness of MRs causing resonance wavelength shifts, which further reduce OSNR, and create communication errors. This paper proposes a novel cross-layer framework called HYDRA to mitigate heterodyne crosstalk due to PVs, off-resonance filtering, and IM effects in PNoCs. The framework consists of two device-level mechanisms and a circuit-level mechanism to improve heterodyne crosstalk resilience in PNoCs. Simulation results on three PNoC architectures indicate that HYDRA can improve the worst case OSNR by up to 5.3× and significantly enhance the reliability of DWDM-based PNoC architectures.</abstract><pub>IEEE</pub><doi>10.1109/TVLSI.2017.2749967</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7289-1530</orcidid><orcidid>https://orcid.org/0000-0002-0846-0066</orcidid><orcidid>https://orcid.org/0000-0002-0918-1755</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-8210 |
ispartof | IEEE transactions on very large scale integration (VLSI) systems, 2018-01, Vol.26 (1), p.168-181 |
issn | 1063-8210 1557-9999 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVLSI_2017_2749967 |
source | IEEE Electronic Library (IEL) |
subjects | Crosstalk Crosstalk noise Detectors Optical noise Optical waveguides photonic NoCs (PNoCs) Photonics process variations (PVs) Signal to noise ratio Wavelength division multiplexing |
title | HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HYDRA:%20Heterodyne%20Crosstalk%20Mitigation%20With%20Double%20Microring%20Resonators%20and%20Data%20Encoding%20for%20Photonic%20NoCs&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Chittamuru,%20Sai%20Vineel%20Reddy&rft.date=2018-01&rft.volume=26&rft.issue=1&rft.spage=168&rft.epage=181&rft.pages=168-181&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2017.2749967&rft_dat=%3Ccrossref_RIE%3E10_1109_TVLSI_2017_2749967%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8039439&rfr_iscdi=true |