HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs

Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 2018-01, Vol.26 (1), p.168-181
Hauptverfasser: Chittamuru, Sai Vineel Reddy, Thakkar, Ishan G., Pasricha, Sudeep
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue 1
container_start_page 168
container_title IEEE transactions on very large scale integration (VLSI) systems
container_volume 26
creator Chittamuru, Sai Vineel Reddy
Thakkar, Ishan G.
Pasricha, Sudeep
description Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wavelength division multiplexing (DWDM) for signal traversal and microring resonators (MRs) for signal modulation. Unfortunately, DWDM increases susceptibility to intermodulation (IM) and off-resonance filtering effects, which reduce optical signal-to-noise ratio (OSNR) for photonic data transfers. Additionally, process variations (PVs) induce variations in the width and thickness of MRs causing resonance wavelength shifts, which further reduce OSNR, and create communication errors. This paper proposes a novel cross-layer framework called HYDRA to mitigate heterodyne crosstalk due to PVs, off-resonance filtering, and IM effects in PNoCs. The framework consists of two device-level mechanisms and a circuit-level mechanism to improve heterodyne crosstalk resilience in PNoCs. Simulation results on three PNoC architectures indicate that HYDRA can improve the worst case OSNR by up to 5.3× and significantly enhance the reliability of DWDM-based PNoC architectures.
doi_str_mv 10.1109/TVLSI.2017.2749967
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVLSI_2017_2749967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8039439</ieee_id><sourcerecordid>10_1109_TVLSI_2017_2749967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-3743b9d6240651ae0e34a158c6e881cebbd6614fc9a434e4f425534c9cadda963</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EEqVwAdj4Ail27DgxuyoFWqn8qBQQq8ixJ61piZFtFr09Ca2YzYy-0RtpHkKXlIwoJfJ6-TZ_mY1SQvNRmnMpRX6EBjTL8kR2ddzNRLCkSCk5RWchfBJCOZdkgDbTj8lifIOnEME7s2sBl96FENV2gx9stCsVrWvxu41rPHE_9Ra6WHvnbbvCCwiuVdH5gFVr8ERFhW9b7Uy_bJzHz2sXXWs1fnRlOEcnjdoGuDj0IXq9u12W02T-dD8rx_NEM0pjwnLOamlEyonIqAICjCuaFVpAUVANdW2EoLzRUnHGgTc8zTLGtdTKGCUFG6J0f1f3n3hoqm9vv5TfVZRUva7qT1fV66oOujroag9ZAPgHCsIkZ5L9AoNsZ7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs</title><source>IEEE Electronic Library (IEL)</source><creator>Chittamuru, Sai Vineel Reddy ; Thakkar, Ishan G. ; Pasricha, Sudeep</creator><creatorcontrib>Chittamuru, Sai Vineel Reddy ; Thakkar, Ishan G. ; Pasricha, Sudeep</creatorcontrib><description>Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wavelength division multiplexing (DWDM) for signal traversal and microring resonators (MRs) for signal modulation. Unfortunately, DWDM increases susceptibility to intermodulation (IM) and off-resonance filtering effects, which reduce optical signal-to-noise ratio (OSNR) for photonic data transfers. Additionally, process variations (PVs) induce variations in the width and thickness of MRs causing resonance wavelength shifts, which further reduce OSNR, and create communication errors. This paper proposes a novel cross-layer framework called HYDRA to mitigate heterodyne crosstalk due to PVs, off-resonance filtering, and IM effects in PNoCs. The framework consists of two device-level mechanisms and a circuit-level mechanism to improve heterodyne crosstalk resilience in PNoCs. Simulation results on three PNoC architectures indicate that HYDRA can improve the worst case OSNR by up to 5.3× and significantly enhance the reliability of DWDM-based PNoC architectures.</description><identifier>ISSN: 1063-8210</identifier><identifier>EISSN: 1557-9999</identifier><identifier>DOI: 10.1109/TVLSI.2017.2749967</identifier><identifier>CODEN: IEVSE9</identifier><language>eng</language><publisher>IEEE</publisher><subject>Crosstalk ; Crosstalk noise ; Detectors ; Optical noise ; Optical waveguides ; photonic NoCs (PNoCs) ; Photonics ; process variations (PVs) ; Signal to noise ratio ; Wavelength division multiplexing</subject><ispartof>IEEE transactions on very large scale integration (VLSI) systems, 2018-01, Vol.26 (1), p.168-181</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c311t-3743b9d6240651ae0e34a158c6e881cebbd6614fc9a434e4f425534c9cadda963</citedby><cites>FETCH-LOGICAL-c311t-3743b9d6240651ae0e34a158c6e881cebbd6614fc9a434e4f425534c9cadda963</cites><orcidid>0000-0002-7289-1530 ; 0000-0002-0846-0066 ; 0000-0002-0918-1755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8039439$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8039439$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chittamuru, Sai Vineel Reddy</creatorcontrib><creatorcontrib>Thakkar, Ishan G.</creatorcontrib><creatorcontrib>Pasricha, Sudeep</creatorcontrib><title>HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs</title><title>IEEE transactions on very large scale integration (VLSI) systems</title><addtitle>TVLSI</addtitle><description>Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wavelength division multiplexing (DWDM) for signal traversal and microring resonators (MRs) for signal modulation. Unfortunately, DWDM increases susceptibility to intermodulation (IM) and off-resonance filtering effects, which reduce optical signal-to-noise ratio (OSNR) for photonic data transfers. Additionally, process variations (PVs) induce variations in the width and thickness of MRs causing resonance wavelength shifts, which further reduce OSNR, and create communication errors. This paper proposes a novel cross-layer framework called HYDRA to mitigate heterodyne crosstalk due to PVs, off-resonance filtering, and IM effects in PNoCs. The framework consists of two device-level mechanisms and a circuit-level mechanism to improve heterodyne crosstalk resilience in PNoCs. Simulation results on three PNoC architectures indicate that HYDRA can improve the worst case OSNR by up to 5.3× and significantly enhance the reliability of DWDM-based PNoC architectures.</description><subject>Crosstalk</subject><subject>Crosstalk noise</subject><subject>Detectors</subject><subject>Optical noise</subject><subject>Optical waveguides</subject><subject>photonic NoCs (PNoCs)</subject><subject>Photonics</subject><subject>process variations (PVs)</subject><subject>Signal to noise ratio</subject><subject>Wavelength division multiplexing</subject><issn>1063-8210</issn><issn>1557-9999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1OwzAQRi0EEqVwAdj4Ail27DgxuyoFWqn8qBQQq8ixJ61piZFtFr09Ca2YzYy-0RtpHkKXlIwoJfJ6-TZ_mY1SQvNRmnMpRX6EBjTL8kR2ddzNRLCkSCk5RWchfBJCOZdkgDbTj8lifIOnEME7s2sBl96FENV2gx9stCsVrWvxu41rPHE_9Ra6WHvnbbvCCwiuVdH5gFVr8ERFhW9b7Uy_bJzHz2sXXWs1fnRlOEcnjdoGuDj0IXq9u12W02T-dD8rx_NEM0pjwnLOamlEyonIqAICjCuaFVpAUVANdW2EoLzRUnHGgTc8zTLGtdTKGCUFG6J0f1f3n3hoqm9vv5TfVZRUva7qT1fV66oOujroag9ZAPgHCsIkZ5L9AoNsZ7s</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Chittamuru, Sai Vineel Reddy</creator><creator>Thakkar, Ishan G.</creator><creator>Pasricha, Sudeep</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7289-1530</orcidid><orcidid>https://orcid.org/0000-0002-0846-0066</orcidid><orcidid>https://orcid.org/0000-0002-0918-1755</orcidid></search><sort><creationdate>201801</creationdate><title>HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs</title><author>Chittamuru, Sai Vineel Reddy ; Thakkar, Ishan G. ; Pasricha, Sudeep</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-3743b9d6240651ae0e34a158c6e881cebbd6614fc9a434e4f425534c9cadda963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crosstalk</topic><topic>Crosstalk noise</topic><topic>Detectors</topic><topic>Optical noise</topic><topic>Optical waveguides</topic><topic>photonic NoCs (PNoCs)</topic><topic>Photonics</topic><topic>process variations (PVs)</topic><topic>Signal to noise ratio</topic><topic>Wavelength division multiplexing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chittamuru, Sai Vineel Reddy</creatorcontrib><creatorcontrib>Thakkar, Ishan G.</creatorcontrib><creatorcontrib>Pasricha, Sudeep</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chittamuru, Sai Vineel Reddy</au><au>Thakkar, Ishan G.</au><au>Pasricha, Sudeep</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs</atitle><jtitle>IEEE transactions on very large scale integration (VLSI) systems</jtitle><stitle>TVLSI</stitle><date>2018-01</date><risdate>2018</risdate><volume>26</volume><issue>1</issue><spage>168</spage><epage>181</epage><pages>168-181</pages><issn>1063-8210</issn><eissn>1557-9999</eissn><coden>IEVSE9</coden><abstract>Silicon-photonic networks on chip (PNoCs) provide high bandwidth with lower data-dependent power dissipation than does the traditional electrical NoCs (ENoCs); therefore, they are promising candidates to replace ENoCs in future manycore chips. PNoCs typically employ photonic waveguides with dense wavelength division multiplexing (DWDM) for signal traversal and microring resonators (MRs) for signal modulation. Unfortunately, DWDM increases susceptibility to intermodulation (IM) and off-resonance filtering effects, which reduce optical signal-to-noise ratio (OSNR) for photonic data transfers. Additionally, process variations (PVs) induce variations in the width and thickness of MRs causing resonance wavelength shifts, which further reduce OSNR, and create communication errors. This paper proposes a novel cross-layer framework called HYDRA to mitigate heterodyne crosstalk due to PVs, off-resonance filtering, and IM effects in PNoCs. The framework consists of two device-level mechanisms and a circuit-level mechanism to improve heterodyne crosstalk resilience in PNoCs. Simulation results on three PNoC architectures indicate that HYDRA can improve the worst case OSNR by up to 5.3× and significantly enhance the reliability of DWDM-based PNoC architectures.</abstract><pub>IEEE</pub><doi>10.1109/TVLSI.2017.2749967</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-7289-1530</orcidid><orcidid>https://orcid.org/0000-0002-0846-0066</orcidid><orcidid>https://orcid.org/0000-0002-0918-1755</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-8210
ispartof IEEE transactions on very large scale integration (VLSI) systems, 2018-01, Vol.26 (1), p.168-181
issn 1063-8210
1557-9999
language eng
recordid cdi_crossref_primary_10_1109_TVLSI_2017_2749967
source IEEE Electronic Library (IEL)
subjects Crosstalk
Crosstalk noise
Detectors
Optical noise
Optical waveguides
photonic NoCs (PNoCs)
Photonics
process variations (PVs)
Signal to noise ratio
Wavelength division multiplexing
title HYDRA: Heterodyne Crosstalk Mitigation With Double Microring Resonators and Data Encoding for Photonic NoCs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A02%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HYDRA:%20Heterodyne%20Crosstalk%20Mitigation%20With%20Double%20Microring%20Resonators%20and%20Data%20Encoding%20for%20Photonic%20NoCs&rft.jtitle=IEEE%20transactions%20on%20very%20large%20scale%20integration%20(VLSI)%20systems&rft.au=Chittamuru,%20Sai%20Vineel%20Reddy&rft.date=2018-01&rft.volume=26&rft.issue=1&rft.spage=168&rft.epage=181&rft.pages=168-181&rft.issn=1063-8210&rft.eissn=1557-9999&rft.coden=IEVSE9&rft_id=info:doi/10.1109/TVLSI.2017.2749967&rft_dat=%3Ccrossref_RIE%3E10_1109_TVLSI_2017_2749967%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8039439&rfr_iscdi=true