Efficient Photon Beam Diffusion for Directional Subsurface Scattering

Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2024-08, Vol.PP, p.1-13
Hauptverfasser: Liang, Shiyu, Gao, Yang, Hu, Chonghao, Hao, Aimin, Qin, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title IEEE transactions on visualization and computer graphics
container_volume PP
creator Liang, Shiyu
Gao, Yang
Hu, Chonghao
Hao, Aimin
Qin, Hong
description Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance methods are inefficient and yield poor illumination details. To address these limitations for better large-distance scattering, we develop a novel algorithm by extending the photon beam diffusion (PBD) model within the light view and screen space. Unlike surface irradiance in prior methods, we incorporate the refracted beam in the medium into real-time scattering estimation, presenting a new consideration for photon beam utilization. Concretely, we store all photon beam samples in light view textures and utilize an adaptive sampling pattern for beam sample selection in large filtering kernel sizes. This can reduce the sample count based on surface attributes. In screen space, virtual sources are derived from samples to estimate PBD contributions, with an approximation that preserves boundary conditions. To avoid possible overestimation, we implement correction factors that scale contributions, effectively aligning our results with path-tracing references. Through these reformulations, our efficient PBD generates results closest to references among existing methods. The experiments accurately represent better front-face illumination details and backlit translucency effects, while significantly accelerating performance compared to previous large-distance methods.
doi_str_mv 10.1109/TVCG.2024.3447668
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2024_3447668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643720</ieee_id><sourcerecordid>3096279844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1195-7a8277a6ac7ee1a4e64f741696ea71794caff99e14d19425f17fa049605ae3423</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMotlY_gCCyRy9bk-xssjlqrX-goNDqNaTpRCO73ZrsHvz2prSKp5kH7z1mfoScMzpmjKrrxdvkYcwph3EBIIWoDsiQKWA5Lak4TDuVMueCiwE5ifGTUgZQqWMyKBSTXNBySKZT57z1uO6yl4-2a9fZLZomu_PO9dEn6dqQVEDbJWXqbN4vYx-csZjNrek6DH79fkqOnKkjnu3niLzeTxeTx3z2_PA0uZnlljFV5tJUXEojjJWIzAAKcBKYUAKNZFKBNc4phQxW6Q1eOiadoaDSpQYL4MWIXO16N6H96jF2uvHRYl2bNbZ91AVVgktVASQr21ltaGMM6PQm-MaEb82o3tLTW3p6S0_v6aXM5b6-Xza4-kv84kqGi53BI-K_QgGF5LT4AfOpcq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096279844</pqid></control><display><type>article</type><title>Efficient Photon Beam Diffusion for Directional Subsurface Scattering</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Shiyu ; Gao, Yang ; Hu, Chonghao ; Hao, Aimin ; Qin, Hong</creator><creatorcontrib>Liang, Shiyu ; Gao, Yang ; Hu, Chonghao ; Hao, Aimin ; Qin, Hong</creatorcontrib><description>Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance methods are inefficient and yield poor illumination details. To address these limitations for better large-distance scattering, we develop a novel algorithm by extending the photon beam diffusion (PBD) model within the light view and screen space. Unlike surface irradiance in prior methods, we incorporate the refracted beam in the medium into real-time scattering estimation, presenting a new consideration for photon beam utilization. Concretely, we store all photon beam samples in light view textures and utilize an adaptive sampling pattern for beam sample selection in large filtering kernel sizes. This can reduce the sample count based on surface attributes. In screen space, virtual sources are derived from samples to estimate PBD contributions, with an approximation that preserves boundary conditions. To avoid possible overestimation, we implement correction factors that scale contributions, effectively aligning our results with path-tracing references. Through these reformulations, our efficient PBD generates results closest to references among existing methods. The experiments accurately represent better front-face illumination details and backlit translucency effects, while significantly accelerating performance compared to previous large-distance methods.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3447668</identifier><identifier>PMID: 39172605</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; adaptive sampling ; BSSRDF ; Faces ; Lighting ; Photonics ; real-time rendering ; Real-time systems ; Rendering (computer graphics) ; Scattering ; Subsurface scattering ; translucent material</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-08, Vol.PP, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9149-3554 ; 0000-0002-5774-6706 ; 0000-0001-7699-1355 ; 0000-0002-7978-2249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39172605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Shiyu</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Hu, Chonghao</creatorcontrib><creatorcontrib>Hao, Aimin</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><title>Efficient Photon Beam Diffusion for Directional Subsurface Scattering</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance methods are inefficient and yield poor illumination details. To address these limitations for better large-distance scattering, we develop a novel algorithm by extending the photon beam diffusion (PBD) model within the light view and screen space. Unlike surface irradiance in prior methods, we incorporate the refracted beam in the medium into real-time scattering estimation, presenting a new consideration for photon beam utilization. Concretely, we store all photon beam samples in light view textures and utilize an adaptive sampling pattern for beam sample selection in large filtering kernel sizes. This can reduce the sample count based on surface attributes. In screen space, virtual sources are derived from samples to estimate PBD contributions, with an approximation that preserves boundary conditions. To avoid possible overestimation, we implement correction factors that scale contributions, effectively aligning our results with path-tracing references. Through these reformulations, our efficient PBD generates results closest to references among existing methods. The experiments accurately represent better front-face illumination details and backlit translucency effects, while significantly accelerating performance compared to previous large-distance methods.</description><subject>Accuracy</subject><subject>adaptive sampling</subject><subject>BSSRDF</subject><subject>Faces</subject><subject>Lighting</subject><subject>Photonics</subject><subject>real-time rendering</subject><subject>Real-time systems</subject><subject>Rendering (computer graphics)</subject><subject>Scattering</subject><subject>Subsurface scattering</subject><subject>translucent material</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMotlY_gCCyRy9bk-xssjlqrX-goNDqNaTpRCO73ZrsHvz2prSKp5kH7z1mfoScMzpmjKrrxdvkYcwph3EBIIWoDsiQKWA5Lak4TDuVMueCiwE5ifGTUgZQqWMyKBSTXNBySKZT57z1uO6yl4-2a9fZLZomu_PO9dEn6dqQVEDbJWXqbN4vYx-csZjNrek6DH79fkqOnKkjnu3niLzeTxeTx3z2_PA0uZnlljFV5tJUXEojjJWIzAAKcBKYUAKNZFKBNc4phQxW6Q1eOiadoaDSpQYL4MWIXO16N6H96jF2uvHRYl2bNbZ91AVVgktVASQr21ltaGMM6PQm-MaEb82o3tLTW3p6S0_v6aXM5b6-Xza4-kv84kqGi53BI-K_QgGF5LT4AfOpcq0</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Liang, Shiyu</creator><creator>Gao, Yang</creator><creator>Hu, Chonghao</creator><creator>Hao, Aimin</creator><creator>Qin, Hong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9149-3554</orcidid><orcidid>https://orcid.org/0000-0002-5774-6706</orcidid><orcidid>https://orcid.org/0000-0001-7699-1355</orcidid><orcidid>https://orcid.org/0000-0002-7978-2249</orcidid></search><sort><creationdate>20240822</creationdate><title>Efficient Photon Beam Diffusion for Directional Subsurface Scattering</title><author>Liang, Shiyu ; Gao, Yang ; Hu, Chonghao ; Hao, Aimin ; Qin, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1195-7a8277a6ac7ee1a4e64f741696ea71794caff99e14d19425f17fa049605ae3423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>adaptive sampling</topic><topic>BSSRDF</topic><topic>Faces</topic><topic>Lighting</topic><topic>Photonics</topic><topic>real-time rendering</topic><topic>Real-time systems</topic><topic>Rendering (computer graphics)</topic><topic>Scattering</topic><topic>Subsurface scattering</topic><topic>translucent material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shiyu</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Hu, Chonghao</creatorcontrib><creatorcontrib>Hao, Aimin</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Shiyu</au><au>Gao, Yang</au><au>Hu, Chonghao</au><au>Hao, Aimin</au><au>Qin, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Photon Beam Diffusion for Directional Subsurface Scattering</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance methods are inefficient and yield poor illumination details. To address these limitations for better large-distance scattering, we develop a novel algorithm by extending the photon beam diffusion (PBD) model within the light view and screen space. Unlike surface irradiance in prior methods, we incorporate the refracted beam in the medium into real-time scattering estimation, presenting a new consideration for photon beam utilization. Concretely, we store all photon beam samples in light view textures and utilize an adaptive sampling pattern for beam sample selection in large filtering kernel sizes. This can reduce the sample count based on surface attributes. In screen space, virtual sources are derived from samples to estimate PBD contributions, with an approximation that preserves boundary conditions. To avoid possible overestimation, we implement correction factors that scale contributions, effectively aligning our results with path-tracing references. Through these reformulations, our efficient PBD generates results closest to references among existing methods. The experiments accurately represent better front-face illumination details and backlit translucency effects, while significantly accelerating performance compared to previous large-distance methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39172605</pmid><doi>10.1109/TVCG.2024.3447668</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9149-3554</orcidid><orcidid>https://orcid.org/0000-0002-5774-6706</orcidid><orcidid>https://orcid.org/0000-0001-7699-1355</orcidid><orcidid>https://orcid.org/0000-0002-7978-2249</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2024-08, Vol.PP, p.1-13
issn 1077-2626
1941-0506
1941-0506
language eng
recordid cdi_crossref_primary_10_1109_TVCG_2024_3447668
source IEEE Electronic Library (IEL)
subjects Accuracy
adaptive sampling
BSSRDF
Faces
Lighting
Photonics
real-time rendering
Real-time systems
Rendering (computer graphics)
Scattering
Subsurface scattering
translucent material
title Efficient Photon Beam Diffusion for Directional Subsurface Scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Photon%20Beam%20Diffusion%20for%20Directional%20Subsurface%20Scattering&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Liang,%20Shiyu&rft.date=2024-08-22&rft.volume=PP&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3447668&rft_dat=%3Cproquest_RIE%3E3096279844%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096279844&rft_id=info:pmid/39172605&rft_ieee_id=10643720&rfr_iscdi=true