Efficient Photon Beam Diffusion for Directional Subsurface Scattering
Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance metho...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2024-08, Vol.PP, p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | PP |
creator | Liang, Shiyu Gao, Yang Hu, Chonghao Hao, Aimin Qin, Hong |
description | Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance methods are inefficient and yield poor illumination details. To address these limitations for better large-distance scattering, we develop a novel algorithm by extending the photon beam diffusion (PBD) model within the light view and screen space. Unlike surface irradiance in prior methods, we incorporate the refracted beam in the medium into real-time scattering estimation, presenting a new consideration for photon beam utilization. Concretely, we store all photon beam samples in light view textures and utilize an adaptive sampling pattern for beam sample selection in large filtering kernel sizes. This can reduce the sample count based on surface attributes. In screen space, virtual sources are derived from samples to estimate PBD contributions, with an approximation that preserves boundary conditions. To avoid possible overestimation, we implement correction factors that scale contributions, effectively aligning our results with path-tracing references. Through these reformulations, our efficient PBD generates results closest to references among existing methods. The experiments accurately represent better front-face illumination details and backlit translucency effects, while significantly accelerating performance compared to previous large-distance methods. |
doi_str_mv | 10.1109/TVCG.2024.3447668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2024_3447668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10643720</ieee_id><sourcerecordid>3096279844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1195-7a8277a6ac7ee1a4e64f741696ea71794caff99e14d19425f17fa049605ae3423</originalsourceid><addsrcrecordid>eNpNkE9LAzEQxYMotlY_gCCyRy9bk-xssjlqrX-goNDqNaTpRCO73ZrsHvz2prSKp5kH7z1mfoScMzpmjKrrxdvkYcwph3EBIIWoDsiQKWA5Lak4TDuVMueCiwE5ifGTUgZQqWMyKBSTXNBySKZT57z1uO6yl4-2a9fZLZomu_PO9dEn6dqQVEDbJWXqbN4vYx-csZjNrek6DH79fkqOnKkjnu3niLzeTxeTx3z2_PA0uZnlljFV5tJUXEojjJWIzAAKcBKYUAKNZFKBNc4phQxW6Q1eOiadoaDSpQYL4MWIXO16N6H96jF2uvHRYl2bNbZ91AVVgktVASQr21ltaGMM6PQm-MaEb82o3tLTW3p6S0_v6aXM5b6-Xza4-kv84kqGi53BI-K_QgGF5LT4AfOpcq0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096279844</pqid></control><display><type>article</type><title>Efficient Photon Beam Diffusion for Directional Subsurface Scattering</title><source>IEEE Electronic Library (IEL)</source><creator>Liang, Shiyu ; Gao, Yang ; Hu, Chonghao ; Hao, Aimin ; Qin, Hong</creator><creatorcontrib>Liang, Shiyu ; Gao, Yang ; Hu, Chonghao ; Hao, Aimin ; Qin, Hong</creatorcontrib><description>Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance methods are inefficient and yield poor illumination details. To address these limitations for better large-distance scattering, we develop a novel algorithm by extending the photon beam diffusion (PBD) model within the light view and screen space. Unlike surface irradiance in prior methods, we incorporate the refracted beam in the medium into real-time scattering estimation, presenting a new consideration for photon beam utilization. Concretely, we store all photon beam samples in light view textures and utilize an adaptive sampling pattern for beam sample selection in large filtering kernel sizes. This can reduce the sample count based on surface attributes. In screen space, virtual sources are derived from samples to estimate PBD contributions, with an approximation that preserves boundary conditions. To avoid possible overestimation, we implement correction factors that scale contributions, effectively aligning our results with path-tracing references. Through these reformulations, our efficient PBD generates results closest to references among existing methods. The experiments accurately represent better front-face illumination details and backlit translucency effects, while significantly accelerating performance compared to previous large-distance methods.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3447668</identifier><identifier>PMID: 39172605</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Accuracy ; adaptive sampling ; BSSRDF ; Faces ; Lighting ; Photonics ; real-time rendering ; Real-time systems ; Rendering (computer graphics) ; Scattering ; Subsurface scattering ; translucent material</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-08, Vol.PP, p.1-13</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9149-3554 ; 0000-0002-5774-6706 ; 0000-0001-7699-1355 ; 0000-0002-7978-2249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10643720$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10643720$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39172605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Shiyu</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Hu, Chonghao</creatorcontrib><creatorcontrib>Hao, Aimin</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><title>Efficient Photon Beam Diffusion for Directional Subsurface Scattering</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance methods are inefficient and yield poor illumination details. To address these limitations for better large-distance scattering, we develop a novel algorithm by extending the photon beam diffusion (PBD) model within the light view and screen space. Unlike surface irradiance in prior methods, we incorporate the refracted beam in the medium into real-time scattering estimation, presenting a new consideration for photon beam utilization. Concretely, we store all photon beam samples in light view textures and utilize an adaptive sampling pattern for beam sample selection in large filtering kernel sizes. This can reduce the sample count based on surface attributes. In screen space, virtual sources are derived from samples to estimate PBD contributions, with an approximation that preserves boundary conditions. To avoid possible overestimation, we implement correction factors that scale contributions, effectively aligning our results with path-tracing references. Through these reformulations, our efficient PBD generates results closest to references among existing methods. The experiments accurately represent better front-face illumination details and backlit translucency effects, while significantly accelerating performance compared to previous large-distance methods.</description><subject>Accuracy</subject><subject>adaptive sampling</subject><subject>BSSRDF</subject><subject>Faces</subject><subject>Lighting</subject><subject>Photonics</subject><subject>real-time rendering</subject><subject>Real-time systems</subject><subject>Rendering (computer graphics)</subject><subject>Scattering</subject><subject>Subsurface scattering</subject><subject>translucent material</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9LAzEQxYMotlY_gCCyRy9bk-xssjlqrX-goNDqNaTpRCO73ZrsHvz2prSKp5kH7z1mfoScMzpmjKrrxdvkYcwph3EBIIWoDsiQKWA5Lak4TDuVMueCiwE5ifGTUgZQqWMyKBSTXNBySKZT57z1uO6yl4-2a9fZLZomu_PO9dEn6dqQVEDbJWXqbN4vYx-csZjNrek6DH79fkqOnKkjnu3niLzeTxeTx3z2_PA0uZnlljFV5tJUXEojjJWIzAAKcBKYUAKNZFKBNc4phQxW6Q1eOiadoaDSpQYL4MWIXO16N6H96jF2uvHRYl2bNbZ91AVVgktVASQr21ltaGMM6PQm-MaEb82o3tLTW3p6S0_v6aXM5b6-Xza4-kv84kqGi53BI-K_QgGF5LT4AfOpcq0</recordid><startdate>20240822</startdate><enddate>20240822</enddate><creator>Liang, Shiyu</creator><creator>Gao, Yang</creator><creator>Hu, Chonghao</creator><creator>Hao, Aimin</creator><creator>Qin, Hong</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9149-3554</orcidid><orcidid>https://orcid.org/0000-0002-5774-6706</orcidid><orcidid>https://orcid.org/0000-0001-7699-1355</orcidid><orcidid>https://orcid.org/0000-0002-7978-2249</orcidid></search><sort><creationdate>20240822</creationdate><title>Efficient Photon Beam Diffusion for Directional Subsurface Scattering</title><author>Liang, Shiyu ; Gao, Yang ; Hu, Chonghao ; Hao, Aimin ; Qin, Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1195-7a8277a6ac7ee1a4e64f741696ea71794caff99e14d19425f17fa049605ae3423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>adaptive sampling</topic><topic>BSSRDF</topic><topic>Faces</topic><topic>Lighting</topic><topic>Photonics</topic><topic>real-time rendering</topic><topic>Real-time systems</topic><topic>Rendering (computer graphics)</topic><topic>Scattering</topic><topic>Subsurface scattering</topic><topic>translucent material</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shiyu</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Hu, Chonghao</creatorcontrib><creatorcontrib>Hao, Aimin</creatorcontrib><creatorcontrib>Qin, Hong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liang, Shiyu</au><au>Gao, Yang</au><au>Hu, Chonghao</au><au>Hao, Aimin</au><au>Qin, Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Photon Beam Diffusion for Directional Subsurface Scattering</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-08-22</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Real-time subsurface scattering techniques are widely used in translucent material rendering. Among advanced methods that rely on the bidirectional scattering-surface reflectance distribution function (BSSRDF), screen space algorithms exhibit limited translucency, while existing large-distance methods are inefficient and yield poor illumination details. To address these limitations for better large-distance scattering, we develop a novel algorithm by extending the photon beam diffusion (PBD) model within the light view and screen space. Unlike surface irradiance in prior methods, we incorporate the refracted beam in the medium into real-time scattering estimation, presenting a new consideration for photon beam utilization. Concretely, we store all photon beam samples in light view textures and utilize an adaptive sampling pattern for beam sample selection in large filtering kernel sizes. This can reduce the sample count based on surface attributes. In screen space, virtual sources are derived from samples to estimate PBD contributions, with an approximation that preserves boundary conditions. To avoid possible overestimation, we implement correction factors that scale contributions, effectively aligning our results with path-tracing references. Through these reformulations, our efficient PBD generates results closest to references among existing methods. The experiments accurately represent better front-face illumination details and backlit translucency effects, while significantly accelerating performance compared to previous large-distance methods.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39172605</pmid><doi>10.1109/TVCG.2024.3447668</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9149-3554</orcidid><orcidid>https://orcid.org/0000-0002-5774-6706</orcidid><orcidid>https://orcid.org/0000-0001-7699-1355</orcidid><orcidid>https://orcid.org/0000-0002-7978-2249</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2024-08, Vol.PP, p.1-13 |
issn | 1077-2626 1941-0506 1941-0506 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVCG_2024_3447668 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy adaptive sampling BSSRDF Faces Lighting Photonics real-time rendering Real-time systems Rendering (computer graphics) Scattering Subsurface scattering translucent material |
title | Efficient Photon Beam Diffusion for Directional Subsurface Scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Photon%20Beam%20Diffusion%20for%20Directional%20Subsurface%20Scattering&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Liang,%20Shiyu&rft.date=2024-08-22&rft.volume=PP&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3447668&rft_dat=%3Cproquest_RIE%3E3096279844%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096279844&rft_id=info:pmid/39172605&rft_ieee_id=10643720&rfr_iscdi=true |