Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users
Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2024-05, Vol.30 (5), p.2239-2246 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2246 |
---|---|
container_issue | 5 |
container_start_page | 2239 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 30 |
creator | Nair, Vivek Guo, Wenbo Wang, Rui O'Brien, James F. Rosenberg, Louis Song, Dawn |
description | Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security, privacy, usability, and more, but currently lack large-scale human motion datasets to study. The BOXRR-23 dataset contains 4,717,215 motion capture recordings, voluntarily submitted by 105,852 XR device users from over 50 countries. BOXRR-23 is over 200 times larger than the largest existing motion capture research dataset and uses a new, highly efficient and purpose-built XR Open Recording (XROR) file format. |
doi_str_mv | 10.1109/TVCG.2024.3372087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2024_3372087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10458406</ieee_id><sourcerecordid>3041499819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-20ebc9638b6ee47957e9db7bfe82feee5ac70f2eada35590d8a03f148412f5353</originalsourceid><addsrcrecordid>eNpdkV1LHDEYhYNY1Nr-gIJIoDcKne2br0nSu-6itqAsLFq8C5mZd2R0dmZNZkr335tlV5FenVw85yThIeQLgwljYL_f_pldTThwORFCczB6jxwxK1kGCvL9dAatM57z_JB8jPERgElp7AE5FEYKDdockb9TDE_Y4prOV9jRi38DdhVWdIG-bYZ1yrIPVdM9RJouEvRsOr9fLDIuzn9QOdH0pmnbpu_oTT9sYuZXwxjwfa0O_ZIyUN8AgN4v6F3EED-RD7VvI37e5TG5u7y4nf3KrudXv2c_r7NSAB8yDliUNhemyBGltkqjrQpd1Gh4jYjKlxpqjr7yQikLlfEgaiaNZLxWQoljcrbdXYX-ecQ4uGUTS2xb32E_Rset0BpYriChX_9DH_sxdOl1ToBk0lrDbKLYlipDH2PA2q1Cs_Rh7Ri4jRS3keI2UtxOSuqc7pbHYonVW-PVQgJOtkCT_vRuUCojIRcvAZiMjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041499819</pqid></control><display><type>article</type><title>Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users</title><source>IEEE Electronic Library (IEL)</source><creator>Nair, Vivek ; Guo, Wenbo ; Wang, Rui ; O'Brien, James F. ; Rosenberg, Louis ; Song, Dawn</creator><creatorcontrib>Nair, Vivek ; Guo, Wenbo ; Wang, Rui ; O'Brien, James F. ; Rosenberg, Louis ; Song, Dawn</creatorcontrib><description>Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security, privacy, usability, and more, but currently lack large-scale human motion datasets to study. The BOXRR-23 dataset contains 4,717,215 motion capture recordings, voluntarily submitted by 105,852 XR device users from over 50 countries. BOXRR-23 is over 200 times larger than the largest existing motion capture research dataset and uses a new, highly efficient and purpose-built XR Open Recording (XROR) file format.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3372087</identifier><identifier>PMID: 38437078</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>big data ; Brushes ; Dataset ; Datasets ; extended reality ; Games ; Human motion ; Internet ; Motion capture ; Recording ; Tracking ; virtual reality ; X reality</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-05, Vol.30 (5), p.2239-2246</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-20ebc9638b6ee47957e9db7bfe82feee5ac70f2eada35590d8a03f148412f5353</cites><orcidid>0000-0003-3457-1429 ; 0000-0001-9745-6802 ; 0000-0002-6890-4503 ; 0000-0001-7274-4525 ; 0000-0001-9513-0542 ; 0000-0003-0246-7045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10458406$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10458406$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38437078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, Vivek</creatorcontrib><creatorcontrib>Guo, Wenbo</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>O'Brien, James F.</creatorcontrib><creatorcontrib>Rosenberg, Louis</creatorcontrib><creatorcontrib>Song, Dawn</creatorcontrib><title>Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security, privacy, usability, and more, but currently lack large-scale human motion datasets to study. The BOXRR-23 dataset contains 4,717,215 motion capture recordings, voluntarily submitted by 105,852 XR device users from over 50 countries. BOXRR-23 is over 200 times larger than the largest existing motion capture research dataset and uses a new, highly efficient and purpose-built XR Open Recording (XROR) file format.</description><subject>big data</subject><subject>Brushes</subject><subject>Dataset</subject><subject>Datasets</subject><subject>extended reality</subject><subject>Games</subject><subject>Human motion</subject><subject>Internet</subject><subject>Motion capture</subject><subject>Recording</subject><subject>Tracking</subject><subject>virtual reality</subject><subject>X reality</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV1LHDEYhYNY1Nr-gIJIoDcKne2br0nSu-6itqAsLFq8C5mZd2R0dmZNZkr335tlV5FenVw85yThIeQLgwljYL_f_pldTThwORFCczB6jxwxK1kGCvL9dAatM57z_JB8jPERgElp7AE5FEYKDdockb9TDE_Y4prOV9jRi38DdhVWdIG-bYZ1yrIPVdM9RJouEvRsOr9fLDIuzn9QOdH0pmnbpu_oTT9sYuZXwxjwfa0O_ZIyUN8AgN4v6F3EED-RD7VvI37e5TG5u7y4nf3KrudXv2c_r7NSAB8yDliUNhemyBGltkqjrQpd1Gh4jYjKlxpqjr7yQikLlfEgaiaNZLxWQoljcrbdXYX-ecQ4uGUTS2xb32E_Rset0BpYriChX_9DH_sxdOl1ToBk0lrDbKLYlipDH2PA2q1Cs_Rh7Ri4jRS3keI2UtxOSuqc7pbHYonVW-PVQgJOtkCT_vRuUCojIRcvAZiMjA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Nair, Vivek</creator><creator>Guo, Wenbo</creator><creator>Wang, Rui</creator><creator>O'Brien, James F.</creator><creator>Rosenberg, Louis</creator><creator>Song, Dawn</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3457-1429</orcidid><orcidid>https://orcid.org/0000-0001-9745-6802</orcidid><orcidid>https://orcid.org/0000-0002-6890-4503</orcidid><orcidid>https://orcid.org/0000-0001-7274-4525</orcidid><orcidid>https://orcid.org/0000-0001-9513-0542</orcidid><orcidid>https://orcid.org/0000-0003-0246-7045</orcidid></search><sort><creationdate>20240501</creationdate><title>Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users</title><author>Nair, Vivek ; Guo, Wenbo ; Wang, Rui ; O'Brien, James F. ; Rosenberg, Louis ; Song, Dawn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-20ebc9638b6ee47957e9db7bfe82feee5ac70f2eada35590d8a03f148412f5353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>big data</topic><topic>Brushes</topic><topic>Dataset</topic><topic>Datasets</topic><topic>extended reality</topic><topic>Games</topic><topic>Human motion</topic><topic>Internet</topic><topic>Motion capture</topic><topic>Recording</topic><topic>Tracking</topic><topic>virtual reality</topic><topic>X reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Vivek</creatorcontrib><creatorcontrib>Guo, Wenbo</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>O'Brien, James F.</creatorcontrib><creatorcontrib>Rosenberg, Louis</creatorcontrib><creatorcontrib>Song, Dawn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nair, Vivek</au><au>Guo, Wenbo</au><au>Wang, Rui</au><au>O'Brien, James F.</au><au>Rosenberg, Louis</au><au>Song, Dawn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>2239</spage><epage>2246</epage><pages>2239-2246</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security, privacy, usability, and more, but currently lack large-scale human motion datasets to study. The BOXRR-23 dataset contains 4,717,215 motion capture recordings, voluntarily submitted by 105,852 XR device users from over 50 countries. BOXRR-23 is over 200 times larger than the largest existing motion capture research dataset and uses a new, highly efficient and purpose-built XR Open Recording (XROR) file format.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38437078</pmid><doi>10.1109/TVCG.2024.3372087</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3457-1429</orcidid><orcidid>https://orcid.org/0000-0001-9745-6802</orcidid><orcidid>https://orcid.org/0000-0002-6890-4503</orcidid><orcidid>https://orcid.org/0000-0001-7274-4525</orcidid><orcidid>https://orcid.org/0000-0001-9513-0542</orcidid><orcidid>https://orcid.org/0000-0003-0246-7045</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2024-05, Vol.30 (5), p.2239-2246 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVCG_2024_3372087 |
source | IEEE Electronic Library (IEL) |
subjects | big data Brushes Dataset Datasets extended reality Games Human motion Internet Motion capture Recording Tracking virtual reality X reality |
title | Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Berkeley%20Open%20Extended%20Reality%20Recordings%202023%20(BOXRR-23):%204.7%20Million%20Motion%20Capture%20Recordings%20from%20105,000%20XR%20Users&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Nair,%20Vivek&rft.date=2024-05-01&rft.volume=30&rft.issue=5&rft.spage=2239&rft.epage=2246&rft.pages=2239-2246&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3372087&rft_dat=%3Cproquest_RIE%3E3041499819%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041499819&rft_id=info:pmid/38437078&rft_ieee_id=10458406&rfr_iscdi=true |