Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users

Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2024-05, Vol.30 (5), p.2239-2246
Hauptverfasser: Nair, Vivek, Guo, Wenbo, Wang, Rui, O'Brien, James F., Rosenberg, Louis, Song, Dawn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2246
container_issue 5
container_start_page 2239
container_title IEEE transactions on visualization and computer graphics
container_volume 30
creator Nair, Vivek
Guo, Wenbo
Wang, Rui
O'Brien, James F.
Rosenberg, Louis
Song, Dawn
description Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security, privacy, usability, and more, but currently lack large-scale human motion datasets to study. The BOXRR-23 dataset contains 4,717,215 motion capture recordings, voluntarily submitted by 105,852 XR device users from over 50 countries. BOXRR-23 is over 200 times larger than the largest existing motion capture research dataset and uses a new, highly efficient and purpose-built XR Open Recording (XROR) file format.
doi_str_mv 10.1109/TVCG.2024.3372087
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2024_3372087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10458406</ieee_id><sourcerecordid>3041499819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-20ebc9638b6ee47957e9db7bfe82feee5ac70f2eada35590d8a03f148412f5353</originalsourceid><addsrcrecordid>eNpdkV1LHDEYhYNY1Nr-gIJIoDcKne2br0nSu-6itqAsLFq8C5mZd2R0dmZNZkr335tlV5FenVw85yThIeQLgwljYL_f_pldTThwORFCczB6jxwxK1kGCvL9dAatM57z_JB8jPERgElp7AE5FEYKDdockb9TDE_Y4prOV9jRi38DdhVWdIG-bYZ1yrIPVdM9RJouEvRsOr9fLDIuzn9QOdH0pmnbpu_oTT9sYuZXwxjwfa0O_ZIyUN8AgN4v6F3EED-RD7VvI37e5TG5u7y4nf3KrudXv2c_r7NSAB8yDliUNhemyBGltkqjrQpd1Gh4jYjKlxpqjr7yQikLlfEgaiaNZLxWQoljcrbdXYX-ecQ4uGUTS2xb32E_Rset0BpYriChX_9DH_sxdOl1ToBk0lrDbKLYlipDH2PA2q1Cs_Rh7Ri4jRS3keI2UtxOSuqc7pbHYonVW-PVQgJOtkCT_vRuUCojIRcvAZiMjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041499819</pqid></control><display><type>article</type><title>Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users</title><source>IEEE Electronic Library (IEL)</source><creator>Nair, Vivek ; Guo, Wenbo ; Wang, Rui ; O'Brien, James F. ; Rosenberg, Louis ; Song, Dawn</creator><creatorcontrib>Nair, Vivek ; Guo, Wenbo ; Wang, Rui ; O'Brien, James F. ; Rosenberg, Louis ; Song, Dawn</creatorcontrib><description>Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security, privacy, usability, and more, but currently lack large-scale human motion datasets to study. The BOXRR-23 dataset contains 4,717,215 motion capture recordings, voluntarily submitted by 105,852 XR device users from over 50 countries. BOXRR-23 is over 200 times larger than the largest existing motion capture research dataset and uses a new, highly efficient and purpose-built XR Open Recording (XROR) file format.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3372087</identifier><identifier>PMID: 38437078</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>big data ; Brushes ; Dataset ; Datasets ; extended reality ; Games ; Human motion ; Internet ; Motion capture ; Recording ; Tracking ; virtual reality ; X reality</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-05, Vol.30 (5), p.2239-2246</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-20ebc9638b6ee47957e9db7bfe82feee5ac70f2eada35590d8a03f148412f5353</cites><orcidid>0000-0003-3457-1429 ; 0000-0001-9745-6802 ; 0000-0002-6890-4503 ; 0000-0001-7274-4525 ; 0000-0001-9513-0542 ; 0000-0003-0246-7045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10458406$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10458406$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38437078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nair, Vivek</creatorcontrib><creatorcontrib>Guo, Wenbo</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>O'Brien, James F.</creatorcontrib><creatorcontrib>Rosenberg, Louis</creatorcontrib><creatorcontrib>Song, Dawn</creatorcontrib><title>Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security, privacy, usability, and more, but currently lack large-scale human motion datasets to study. The BOXRR-23 dataset contains 4,717,215 motion capture recordings, voluntarily submitted by 105,852 XR device users from over 50 countries. BOXRR-23 is over 200 times larger than the largest existing motion capture research dataset and uses a new, highly efficient and purpose-built XR Open Recording (XROR) file format.</description><subject>big data</subject><subject>Brushes</subject><subject>Dataset</subject><subject>Datasets</subject><subject>extended reality</subject><subject>Games</subject><subject>Human motion</subject><subject>Internet</subject><subject>Motion capture</subject><subject>Recording</subject><subject>Tracking</subject><subject>virtual reality</subject><subject>X reality</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkV1LHDEYhYNY1Nr-gIJIoDcKne2br0nSu-6itqAsLFq8C5mZd2R0dmZNZkr335tlV5FenVw85yThIeQLgwljYL_f_pldTThwORFCczB6jxwxK1kGCvL9dAatM57z_JB8jPERgElp7AE5FEYKDdockb9TDE_Y4prOV9jRi38DdhVWdIG-bYZ1yrIPVdM9RJouEvRsOr9fLDIuzn9QOdH0pmnbpu_oTT9sYuZXwxjwfa0O_ZIyUN8AgN4v6F3EED-RD7VvI37e5TG5u7y4nf3KrudXv2c_r7NSAB8yDliUNhemyBGltkqjrQpd1Gh4jYjKlxpqjr7yQikLlfEgaiaNZLxWQoljcrbdXYX-ecQ4uGUTS2xb32E_Rset0BpYriChX_9DH_sxdOl1ToBk0lrDbKLYlipDH2PA2q1Cs_Rh7Ri4jRS3keI2UtxOSuqc7pbHYonVW-PVQgJOtkCT_vRuUCojIRcvAZiMjA</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Nair, Vivek</creator><creator>Guo, Wenbo</creator><creator>Wang, Rui</creator><creator>O'Brien, James F.</creator><creator>Rosenberg, Louis</creator><creator>Song, Dawn</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3457-1429</orcidid><orcidid>https://orcid.org/0000-0001-9745-6802</orcidid><orcidid>https://orcid.org/0000-0002-6890-4503</orcidid><orcidid>https://orcid.org/0000-0001-7274-4525</orcidid><orcidid>https://orcid.org/0000-0001-9513-0542</orcidid><orcidid>https://orcid.org/0000-0003-0246-7045</orcidid></search><sort><creationdate>20240501</creationdate><title>Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users</title><author>Nair, Vivek ; Guo, Wenbo ; Wang, Rui ; O'Brien, James F. ; Rosenberg, Louis ; Song, Dawn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-20ebc9638b6ee47957e9db7bfe82feee5ac70f2eada35590d8a03f148412f5353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>big data</topic><topic>Brushes</topic><topic>Dataset</topic><topic>Datasets</topic><topic>extended reality</topic><topic>Games</topic><topic>Human motion</topic><topic>Internet</topic><topic>Motion capture</topic><topic>Recording</topic><topic>Tracking</topic><topic>virtual reality</topic><topic>X reality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Vivek</creatorcontrib><creatorcontrib>Guo, Wenbo</creatorcontrib><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>O'Brien, James F.</creatorcontrib><creatorcontrib>Rosenberg, Louis</creatorcontrib><creatorcontrib>Song, Dawn</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nair, Vivek</au><au>Guo, Wenbo</au><au>Wang, Rui</au><au>O'Brien, James F.</au><au>Rosenberg, Louis</au><au>Song, Dawn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>2239</spage><epage>2246</epage><pages>2239-2246</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Extended reality (XR) devices such as the Meta Quest and Apple Vision Pro have seen a recent surge in attention, with motion tracking “telemetry” data lying at the core of nearly all XR and metaverse experiences. Researchers are just beginning to understand the implications of this data for security, privacy, usability, and more, but currently lack large-scale human motion datasets to study. The BOXRR-23 dataset contains 4,717,215 motion capture recordings, voluntarily submitted by 105,852 XR device users from over 50 countries. BOXRR-23 is over 200 times larger than the largest existing motion capture research dataset and uses a new, highly efficient and purpose-built XR Open Recording (XROR) file format.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38437078</pmid><doi>10.1109/TVCG.2024.3372087</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3457-1429</orcidid><orcidid>https://orcid.org/0000-0001-9745-6802</orcidid><orcidid>https://orcid.org/0000-0002-6890-4503</orcidid><orcidid>https://orcid.org/0000-0001-7274-4525</orcidid><orcidid>https://orcid.org/0000-0001-9513-0542</orcidid><orcidid>https://orcid.org/0000-0003-0246-7045</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2024-05, Vol.30 (5), p.2239-2246
issn 1077-2626
1941-0506
language eng
recordid cdi_crossref_primary_10_1109_TVCG_2024_3372087
source IEEE Electronic Library (IEL)
subjects big data
Brushes
Dataset
Datasets
extended reality
Games
Human motion
Internet
Motion capture
Recording
Tracking
virtual reality
X reality
title Berkeley Open Extended Reality Recordings 2023 (BOXRR-23): 4.7 Million Motion Capture Recordings from 105,000 XR Users
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A58%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Berkeley%20Open%20Extended%20Reality%20Recordings%202023%20(BOXRR-23):%204.7%20Million%20Motion%20Capture%20Recordings%20from%20105,000%20XR%20Users&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Nair,%20Vivek&rft.date=2024-05-01&rft.volume=30&rft.issue=5&rft.spage=2239&rft.epage=2246&rft.pages=2239-2246&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3372087&rft_dat=%3Cproquest_RIE%3E3041499819%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041499819&rft_id=info:pmid/38437078&rft_ieee_id=10458406&rfr_iscdi=true