Pigmento: Pigment-Based Image Analysis and Editing

The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2019-09, Vol.25 (9), p.2791-2803
Hauptverfasser: Tan, Jianchao, DiVerdi, Stephen, Lu, Jingwan, Gingold, Yotam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2803
container_issue 9
container_start_page 2791
container_title IEEE transactions on visualization and computer graphics
container_volume 25
creator Tan, Jianchao
DiVerdi, Stephen
Lu, Jingwan
Gingold, Yotam
description The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.
doi_str_mv 10.1109/TVCG.2018.2858238
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2018_2858238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8418388</ieee_id><sourcerecordid>2268434676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-51c7449793fad0bd595ac541a220cf009621317621b1708a78ebe2342b03ba013</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFZ_gAgS8OIldfZ711sttRYKeqhel02yKSn5qNnk0H_vlsYevMwMzPMOw4PQHYYJxqCf19-zxYQAVhOiuCJUnaErrBmOgYM4DzNIGRNBxAhde78FwIwpfYlGFICBYOIKkc9iU7m6a16iYYpfrXdZtKzsxkXT2pZ7X_jI1lk0z4quqDc36CK3pXe3Qx-jr7f5evYerz4Wy9l0FaeU6S7mOJWMaalpbjNIMq65TTnDlhBIcwAtCKZYhppgCcpK5RJHKCMJ0MQCpmP0dLy7a5uf3vnOVIVPXVna2jW9NwRCmFLFeUAf_6Hbpm_D74EiQjHKhBSBwkcqbRvvW5ebXVtUtt0bDOYg1ByEmoNQMwgNmYfhcp9ULjsl_gwG4P4IFM6501oxrKhS9BcsjXXH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268434676</pqid></control><display><type>article</type><title>Pigmento: Pigment-Based Image Analysis and Editing</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Jianchao ; DiVerdi, Stephen ; Lu, Jingwan ; Gingold, Yotam</creator><creatorcontrib>Tan, Jianchao ; DiVerdi, Stephen ; Lu, Jingwan ; Gingold, Yotam</creatorcontrib><description>The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2018.2858238</identifier><identifier>PMID: 30040646</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Absorption ; Algorithms ; color ; Computational modeling ; Digital imaging ; Editing ; Ground truth ; Image analysis ; Image color analysis ; kubelka-munk ; layering ; Masking ; Mathematical model ; mixing ; non-photorealistic editing ; NPR ; paint ; pigment ; Pigments ; RGB ; Scattering ; Scattering coefficients</subject><ispartof>IEEE transactions on visualization and computer graphics, 2019-09, Vol.25 (9), p.2791-2803</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-51c7449793fad0bd595ac541a220cf009621317621b1708a78ebe2342b03ba013</citedby><cites>FETCH-LOGICAL-c349t-51c7449793fad0bd595ac541a220cf009621317621b1708a78ebe2342b03ba013</cites><orcidid>0000-0002-9862-2654 ; 0000-0002-5381-2104 ; 0000-0002-6694-3381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8418388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8418388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30040646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Jianchao</creatorcontrib><creatorcontrib>DiVerdi, Stephen</creatorcontrib><creatorcontrib>Lu, Jingwan</creatorcontrib><creatorcontrib>Gingold, Yotam</creatorcontrib><title>Pigmento: Pigment-Based Image Analysis and Editing</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.</description><subject>Absorption</subject><subject>Algorithms</subject><subject>color</subject><subject>Computational modeling</subject><subject>Digital imaging</subject><subject>Editing</subject><subject>Ground truth</subject><subject>Image analysis</subject><subject>Image color analysis</subject><subject>kubelka-munk</subject><subject>layering</subject><subject>Masking</subject><subject>Mathematical model</subject><subject>mixing</subject><subject>non-photorealistic editing</subject><subject>NPR</subject><subject>paint</subject><subject>pigment</subject><subject>Pigments</subject><subject>RGB</subject><subject>Scattering</subject><subject>Scattering coefficients</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRrFZ_gAgS8OIldfZ711sttRYKeqhel02yKSn5qNnk0H_vlsYevMwMzPMOw4PQHYYJxqCf19-zxYQAVhOiuCJUnaErrBmOgYM4DzNIGRNBxAhde78FwIwpfYlGFICBYOIKkc9iU7m6a16iYYpfrXdZtKzsxkXT2pZ7X_jI1lk0z4quqDc36CK3pXe3Qx-jr7f5evYerz4Wy9l0FaeU6S7mOJWMaalpbjNIMq65TTnDlhBIcwAtCKZYhppgCcpK5RJHKCMJ0MQCpmP0dLy7a5uf3vnOVIVPXVna2jW9NwRCmFLFeUAf_6Hbpm_D74EiQjHKhBSBwkcqbRvvW5ebXVtUtt0bDOYg1ByEmoNQMwgNmYfhcp9ULjsl_gwG4P4IFM6501oxrKhS9BcsjXXH</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Tan, Jianchao</creator><creator>DiVerdi, Stephen</creator><creator>Lu, Jingwan</creator><creator>Gingold, Yotam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9862-2654</orcidid><orcidid>https://orcid.org/0000-0002-5381-2104</orcidid><orcidid>https://orcid.org/0000-0002-6694-3381</orcidid></search><sort><creationdate>20190901</creationdate><title>Pigmento: Pigment-Based Image Analysis and Editing</title><author>Tan, Jianchao ; DiVerdi, Stephen ; Lu, Jingwan ; Gingold, Yotam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-51c7449793fad0bd595ac541a220cf009621317621b1708a78ebe2342b03ba013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Algorithms</topic><topic>color</topic><topic>Computational modeling</topic><topic>Digital imaging</topic><topic>Editing</topic><topic>Ground truth</topic><topic>Image analysis</topic><topic>Image color analysis</topic><topic>kubelka-munk</topic><topic>layering</topic><topic>Masking</topic><topic>Mathematical model</topic><topic>mixing</topic><topic>non-photorealistic editing</topic><topic>NPR</topic><topic>paint</topic><topic>pigment</topic><topic>Pigments</topic><topic>RGB</topic><topic>Scattering</topic><topic>Scattering coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jianchao</creatorcontrib><creatorcontrib>DiVerdi, Stephen</creatorcontrib><creatorcontrib>Lu, Jingwan</creatorcontrib><creatorcontrib>Gingold, Yotam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Jianchao</au><au>DiVerdi, Stephen</au><au>Lu, Jingwan</au><au>Gingold, Yotam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pigmento: Pigment-Based Image Analysis and Editing</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>25</volume><issue>9</issue><spage>2791</spage><epage>2803</epage><pages>2791-2803</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30040646</pmid><doi>10.1109/TVCG.2018.2858238</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9862-2654</orcidid><orcidid>https://orcid.org/0000-0002-5381-2104</orcidid><orcidid>https://orcid.org/0000-0002-6694-3381</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2019-09, Vol.25 (9), p.2791-2803
issn 1077-2626
1941-0506
language eng
recordid cdi_crossref_primary_10_1109_TVCG_2018_2858238
source IEEE Electronic Library (IEL)
subjects Absorption
Algorithms
color
Computational modeling
Digital imaging
Editing
Ground truth
Image analysis
Image color analysis
kubelka-munk
layering
Masking
Mathematical model
mixing
non-photorealistic editing
NPR
paint
pigment
Pigments
RGB
Scattering
Scattering coefficients
title Pigmento: Pigment-Based Image Analysis and Editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pigmento:%20Pigment-Based%20Image%20Analysis%20and%20Editing&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Tan,%20Jianchao&rft.date=2019-09-01&rft.volume=25&rft.issue=9&rft.spage=2791&rft.epage=2803&rft.pages=2791-2803&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2018.2858238&rft_dat=%3Cproquest_RIE%3E2268434676%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268434676&rft_id=info:pmid/30040646&rft_ieee_id=8418388&rfr_iscdi=true