Pigmento: Pigment-Based Image Analysis and Editing
The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this str...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2019-09, Vol.25 (9), p.2791-2803 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2803 |
---|---|
container_issue | 9 |
container_start_page | 2791 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 25 |
creator | Tan, Jianchao DiVerdi, Stephen Lu, Jingwan Gingold, Yotam |
description | The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement. |
doi_str_mv | 10.1109/TVCG.2018.2858238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2018_2858238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8418388</ieee_id><sourcerecordid>2268434676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-51c7449793fad0bd595ac541a220cf009621317621b1708a78ebe2342b03ba013</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRrFZ_gAgS8OIldfZ711sttRYKeqhel02yKSn5qNnk0H_vlsYevMwMzPMOw4PQHYYJxqCf19-zxYQAVhOiuCJUnaErrBmOgYM4DzNIGRNBxAhde78FwIwpfYlGFICBYOIKkc9iU7m6a16iYYpfrXdZtKzsxkXT2pZ7X_jI1lk0z4quqDc36CK3pXe3Qx-jr7f5evYerz4Wy9l0FaeU6S7mOJWMaalpbjNIMq65TTnDlhBIcwAtCKZYhppgCcpK5RJHKCMJ0MQCpmP0dLy7a5uf3vnOVIVPXVna2jW9NwRCmFLFeUAf_6Hbpm_D74EiQjHKhBSBwkcqbRvvW5ebXVtUtt0bDOYg1ByEmoNQMwgNmYfhcp9ULjsl_gwG4P4IFM6501oxrKhS9BcsjXXH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268434676</pqid></control><display><type>article</type><title>Pigmento: Pigment-Based Image Analysis and Editing</title><source>IEEE Electronic Library (IEL)</source><creator>Tan, Jianchao ; DiVerdi, Stephen ; Lu, Jingwan ; Gingold, Yotam</creator><creatorcontrib>Tan, Jianchao ; DiVerdi, Stephen ; Lu, Jingwan ; Gingold, Yotam</creatorcontrib><description>The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2018.2858238</identifier><identifier>PMID: 30040646</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Absorption ; Algorithms ; color ; Computational modeling ; Digital imaging ; Editing ; Ground truth ; Image analysis ; Image color analysis ; kubelka-munk ; layering ; Masking ; Mathematical model ; mixing ; non-photorealistic editing ; NPR ; paint ; pigment ; Pigments ; RGB ; Scattering ; Scattering coefficients</subject><ispartof>IEEE transactions on visualization and computer graphics, 2019-09, Vol.25 (9), p.2791-2803</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-51c7449793fad0bd595ac541a220cf009621317621b1708a78ebe2342b03ba013</citedby><cites>FETCH-LOGICAL-c349t-51c7449793fad0bd595ac541a220cf009621317621b1708a78ebe2342b03ba013</cites><orcidid>0000-0002-9862-2654 ; 0000-0002-5381-2104 ; 0000-0002-6694-3381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8418388$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8418388$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30040646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Jianchao</creatorcontrib><creatorcontrib>DiVerdi, Stephen</creatorcontrib><creatorcontrib>Lu, Jingwan</creatorcontrib><creatorcontrib>Gingold, Yotam</creatorcontrib><title>Pigmento: Pigment-Based Image Analysis and Editing</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.</description><subject>Absorption</subject><subject>Algorithms</subject><subject>color</subject><subject>Computational modeling</subject><subject>Digital imaging</subject><subject>Editing</subject><subject>Ground truth</subject><subject>Image analysis</subject><subject>Image color analysis</subject><subject>kubelka-munk</subject><subject>layering</subject><subject>Masking</subject><subject>Mathematical model</subject><subject>mixing</subject><subject>non-photorealistic editing</subject><subject>NPR</subject><subject>paint</subject><subject>pigment</subject><subject>Pigments</subject><subject>RGB</subject><subject>Scattering</subject><subject>Scattering coefficients</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRrFZ_gAgS8OIldfZ711sttRYKeqhel02yKSn5qNnk0H_vlsYevMwMzPMOw4PQHYYJxqCf19-zxYQAVhOiuCJUnaErrBmOgYM4DzNIGRNBxAhde78FwIwpfYlGFICBYOIKkc9iU7m6a16iYYpfrXdZtKzsxkXT2pZ7X_jI1lk0z4quqDc36CK3pXe3Qx-jr7f5evYerz4Wy9l0FaeU6S7mOJWMaalpbjNIMq65TTnDlhBIcwAtCKZYhppgCcpK5RJHKCMJ0MQCpmP0dLy7a5uf3vnOVIVPXVna2jW9NwRCmFLFeUAf_6Hbpm_D74EiQjHKhBSBwkcqbRvvW5ebXVtUtt0bDOYg1ByEmoNQMwgNmYfhcp9ULjsl_gwG4P4IFM6501oxrKhS9BcsjXXH</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Tan, Jianchao</creator><creator>DiVerdi, Stephen</creator><creator>Lu, Jingwan</creator><creator>Gingold, Yotam</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9862-2654</orcidid><orcidid>https://orcid.org/0000-0002-5381-2104</orcidid><orcidid>https://orcid.org/0000-0002-6694-3381</orcidid></search><sort><creationdate>20190901</creationdate><title>Pigmento: Pigment-Based Image Analysis and Editing</title><author>Tan, Jianchao ; DiVerdi, Stephen ; Lu, Jingwan ; Gingold, Yotam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-51c7449793fad0bd595ac541a220cf009621317621b1708a78ebe2342b03ba013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Absorption</topic><topic>Algorithms</topic><topic>color</topic><topic>Computational modeling</topic><topic>Digital imaging</topic><topic>Editing</topic><topic>Ground truth</topic><topic>Image analysis</topic><topic>Image color analysis</topic><topic>kubelka-munk</topic><topic>layering</topic><topic>Masking</topic><topic>Mathematical model</topic><topic>mixing</topic><topic>non-photorealistic editing</topic><topic>NPR</topic><topic>paint</topic><topic>pigment</topic><topic>Pigments</topic><topic>RGB</topic><topic>Scattering</topic><topic>Scattering coefficients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Jianchao</creatorcontrib><creatorcontrib>DiVerdi, Stephen</creatorcontrib><creatorcontrib>Lu, Jingwan</creatorcontrib><creatorcontrib>Gingold, Yotam</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tan, Jianchao</au><au>DiVerdi, Stephen</au><au>Lu, Jingwan</au><au>Gingold, Yotam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pigmento: Pigment-Based Image Analysis and Editing</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2019-09-01</date><risdate>2019</risdate><volume>25</volume><issue>9</issue><spage>2791</spage><epage>2803</epage><pages>2791-2803</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>The colorful appearance of a physical painting is determined by the distribution of paint pigments across the canvas, which we model as a per-pixel mixture of a small number of pigments with multispectral absorption and scattering coefficients. We present an algorithm to efficiently recover this structure from an RGB image, yielding a plausible set of pigments and a low RGB reconstruction error. We show that under certain circumstances we are able to recover pigments that are close to ground truth, while in all cases our results are always plausible. Using our decomposition, we repose standard digital image editing operations as operations in pigment space rather than RGB, with interestingly novel results. We demonstrate tonal adjustments, selection masking, cut-copy-paste, recoloring, palette summarization, and edge enhancement.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30040646</pmid><doi>10.1109/TVCG.2018.2858238</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9862-2654</orcidid><orcidid>https://orcid.org/0000-0002-5381-2104</orcidid><orcidid>https://orcid.org/0000-0002-6694-3381</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2019-09, Vol.25 (9), p.2791-2803 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVCG_2018_2858238 |
source | IEEE Electronic Library (IEL) |
subjects | Absorption Algorithms color Computational modeling Digital imaging Editing Ground truth Image analysis Image color analysis kubelka-munk layering Masking Mathematical model mixing non-photorealistic editing NPR paint pigment Pigments RGB Scattering Scattering coefficients |
title | Pigmento: Pigment-Based Image Analysis and Editing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A23%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pigmento:%20Pigment-Based%20Image%20Analysis%20and%20Editing&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Tan,%20Jianchao&rft.date=2019-09-01&rft.volume=25&rft.issue=9&rft.spage=2791&rft.epage=2803&rft.pages=2791-2803&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2018.2858238&rft_dat=%3Cproquest_RIE%3E2268434676%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268434676&rft_id=info:pmid/30040646&rft_ieee_id=8418388&rfr_iscdi=true |