SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data

Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2018-01, Vol.24 (1), p.246-255
Hauptverfasser: Zhao, Xun, Wu, Yanhong, Cui, Weiwei, Du, Xinnan, Chen, Yuan, Wang, Yong, Lee, Dik Lun, Qu, Huamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 1
container_start_page 246
container_title IEEE transactions on visualization and computer graphics
container_volume 24
creator Zhao, Xun
Wu, Yanhong
Cui, Weiwei
Du, Xinnan
Chen, Yuan
Wang, Yong
Lee, Dik Lun
Qu, Huamin
description Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens.
doi_str_mv 10.1109/TVCG.2017.2744738
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2017_2744738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8019873</ieee_id><sourcerecordid>1935403546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-47ffdbd34264847de462088fef4706a88c68eeb2ef087589268d647c3abde1e63</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-ABEk4MVL6n5ldyN4KK1WoeLB2uuySWZha5rUbHLov3dDaw8ehhl4nxmGB6FrgseE4PRhuZrOxxQTOaaSc8nUCRqSlJMYJ1ichhlLGVNBxQBdeL_GmHCu0nM0oEoJkSRqiJ4-v3cLqPxjtHK-M2U0qUy5885HtY1CVroKorqK3ruydfHMbQLr6sBEM9OaS3RmTenh6tBH6OvleTl9jRcf87fpZBHnLKVtzKW1RVYwTgVXXBbABcVKWbBcYmGUyoUCyChYrGSiUipUIbjMmckKICDYCN3v726b-qcD3-qN8zmUpamg7rwmKUs4DtWjd__Qdd014eGeCpYYx2lPkT2VN7X3DVi9bdzGNDtNsO7d6t6t7t3qg9uwc3u43GUbKI4bfzIDcLMHHAAcY4VJqiRjv-X_e3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974434096</pqid></control><display><type>article</type><title>SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Xun ; Wu, Yanhong ; Cui, Weiwei ; Du, Xinnan ; Chen, Yuan ; Wang, Yong ; Lee, Dik Lun ; Qu, Huamin</creator><creatorcontrib>Zhao, Xun ; Wu, Yanhong ; Cui, Weiwei ; Du, Xinnan ; Chen, Yuan ; Wang, Yong ; Lee, Dik Lun ; Qu, Huamin</creatorcontrib><description>Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2744738</identifier><identifier>PMID: 28866558</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Decision making ; Human resources ; Industries ; Measurement ; multi-criteria decision making ; multi-dimensional data ; Multidimensional data ; Queries ; Skyline query ; skyline visualization ; Tourism ; Urban areas ; User requirements ; Visual analytics</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.246-255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-47ffdbd34264847de462088fef4706a88c68eeb2ef087589268d647c3abde1e63</citedby><cites>FETCH-LOGICAL-c392t-47ffdbd34264847de462088fef4706a88c68eeb2ef087589268d647c3abde1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8019873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8019873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xun</creatorcontrib><creatorcontrib>Wu, Yanhong</creatorcontrib><creatorcontrib>Cui, Weiwei</creatorcontrib><creatorcontrib>Du, Xinnan</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lee, Dik Lun</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><title>SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens.</description><subject>Decision making</subject><subject>Human resources</subject><subject>Industries</subject><subject>Measurement</subject><subject>multi-criteria decision making</subject><subject>multi-dimensional data</subject><subject>Multidimensional data</subject><subject>Queries</subject><subject>Skyline query</subject><subject>skyline visualization</subject><subject>Tourism</subject><subject>Urban areas</subject><subject>User requirements</subject><subject>Visual analytics</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3-ABEk4MVL6n5ldyN4KK1WoeLB2uuySWZha5rUbHLov3dDaw8ehhl4nxmGB6FrgseE4PRhuZrOxxQTOaaSc8nUCRqSlJMYJ1ichhlLGVNBxQBdeL_GmHCu0nM0oEoJkSRqiJ4-v3cLqPxjtHK-M2U0qUy5885HtY1CVroKorqK3ruydfHMbQLr6sBEM9OaS3RmTenh6tBH6OvleTl9jRcf87fpZBHnLKVtzKW1RVYwTgVXXBbABcVKWbBcYmGUyoUCyChYrGSiUipUIbjMmckKICDYCN3v726b-qcD3-qN8zmUpamg7rwmKUs4DtWjd__Qdd014eGeCpYYx2lPkT2VN7X3DVi9bdzGNDtNsO7d6t6t7t3qg9uwc3u43GUbKI4bfzIDcLMHHAAcY4VJqiRjv-X_e3M</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zhao, Xun</creator><creator>Wu, Yanhong</creator><creator>Cui, Weiwei</creator><creator>Du, Xinnan</creator><creator>Chen, Yuan</creator><creator>Wang, Yong</creator><creator>Lee, Dik Lun</creator><creator>Qu, Huamin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data</title><author>Zhao, Xun ; Wu, Yanhong ; Cui, Weiwei ; Du, Xinnan ; Chen, Yuan ; Wang, Yong ; Lee, Dik Lun ; Qu, Huamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-47ffdbd34264847de462088fef4706a88c68eeb2ef087589268d647c3abde1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Decision making</topic><topic>Human resources</topic><topic>Industries</topic><topic>Measurement</topic><topic>multi-criteria decision making</topic><topic>multi-dimensional data</topic><topic>Multidimensional data</topic><topic>Queries</topic><topic>Skyline query</topic><topic>skyline visualization</topic><topic>Tourism</topic><topic>Urban areas</topic><topic>User requirements</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xun</creatorcontrib><creatorcontrib>Wu, Yanhong</creatorcontrib><creatorcontrib>Cui, Weiwei</creatorcontrib><creatorcontrib>Du, Xinnan</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lee, Dik Lun</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Xun</au><au>Wu, Yanhong</au><au>Cui, Weiwei</au><au>Du, Xinnan</au><au>Chen, Yuan</au><au>Wang, Yong</au><au>Lee, Dik Lun</au><au>Qu, Huamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-01</date><risdate>2018</risdate><volume>24</volume><issue>1</issue><spage>246</spage><epage>255</epage><pages>246-255</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866558</pmid><doi>10.1109/TVCG.2017.2744738</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.246-255
issn 1077-2626
1941-0506
language eng
recordid cdi_crossref_primary_10_1109_TVCG_2017_2744738
source IEEE Electronic Library (IEL)
subjects Decision making
Human resources
Industries
Measurement
multi-criteria decision making
multi-dimensional data
Multidimensional data
Queries
Skyline query
skyline visualization
Tourism
Urban areas
User requirements
Visual analytics
title SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SkyLens:%20Visual%20Analysis%20of%20Skyline%20on%20Multi-Dimensional%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Zhao,%20Xun&rft.date=2018-01&rft.volume=24&rft.issue=1&rft.spage=246&rft.epage=255&rft.pages=246-255&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2744738&rft_dat=%3Cproquest_RIE%3E1935403546%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974434096&rft_id=info:pmid/28866558&rft_ieee_id=8019873&rfr_iscdi=true