SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data
Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline)...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2018-01, Vol.24 (1), p.246-255 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 1 |
container_start_page | 246 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | 24 |
creator | Zhao, Xun Wu, Yanhong Cui, Weiwei Du, Xinnan Chen, Yuan Wang, Yong Lee, Dik Lun Qu, Huamin |
description | Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens. |
doi_str_mv | 10.1109/TVCG.2017.2744738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2017_2744738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8019873</ieee_id><sourcerecordid>1935403546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-47ffdbd34264847de462088fef4706a88c68eeb2ef087589268d647c3abde1e63</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRbK3-ABEk4MVL6n5ldyN4KK1WoeLB2uuySWZha5rUbHLov3dDaw8ehhl4nxmGB6FrgseE4PRhuZrOxxQTOaaSc8nUCRqSlJMYJ1ichhlLGVNBxQBdeL_GmHCu0nM0oEoJkSRqiJ4-v3cLqPxjtHK-M2U0qUy5885HtY1CVroKorqK3ruydfHMbQLr6sBEM9OaS3RmTenh6tBH6OvleTl9jRcf87fpZBHnLKVtzKW1RVYwTgVXXBbABcVKWbBcYmGUyoUCyChYrGSiUipUIbjMmckKICDYCN3v726b-qcD3-qN8zmUpamg7rwmKUs4DtWjd__Qdd014eGeCpYYx2lPkT2VN7X3DVi9bdzGNDtNsO7d6t6t7t3qg9uwc3u43GUbKI4bfzIDcLMHHAAcY4VJqiRjv-X_e3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1974434096</pqid></control><display><type>article</type><title>SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data</title><source>IEEE Electronic Library (IEL)</source><creator>Zhao, Xun ; Wu, Yanhong ; Cui, Weiwei ; Du, Xinnan ; Chen, Yuan ; Wang, Yong ; Lee, Dik Lun ; Qu, Huamin</creator><creatorcontrib>Zhao, Xun ; Wu, Yanhong ; Cui, Weiwei ; Du, Xinnan ; Chen, Yuan ; Wang, Yong ; Lee, Dik Lun ; Qu, Huamin</creatorcontrib><description>Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2744738</identifier><identifier>PMID: 28866558</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Decision making ; Human resources ; Industries ; Measurement ; multi-criteria decision making ; multi-dimensional data ; Multidimensional data ; Queries ; Skyline query ; skyline visualization ; Tourism ; Urban areas ; User requirements ; Visual analytics</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.246-255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-47ffdbd34264847de462088fef4706a88c68eeb2ef087589268d647c3abde1e63</citedby><cites>FETCH-LOGICAL-c392t-47ffdbd34264847de462088fef4706a88c68eeb2ef087589268d647c3abde1e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8019873$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8019873$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28866558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Xun</creatorcontrib><creatorcontrib>Wu, Yanhong</creatorcontrib><creatorcontrib>Cui, Weiwei</creatorcontrib><creatorcontrib>Du, Xinnan</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lee, Dik Lun</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><title>SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens.</description><subject>Decision making</subject><subject>Human resources</subject><subject>Industries</subject><subject>Measurement</subject><subject>multi-criteria decision making</subject><subject>multi-dimensional data</subject><subject>Multidimensional data</subject><subject>Queries</subject><subject>Skyline query</subject><subject>skyline visualization</subject><subject>Tourism</subject><subject>Urban areas</subject><subject>User requirements</subject><subject>Visual analytics</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1Lw0AQhhdRbK3-ABEk4MVL6n5ldyN4KK1WoeLB2uuySWZha5rUbHLov3dDaw8ehhl4nxmGB6FrgseE4PRhuZrOxxQTOaaSc8nUCRqSlJMYJ1ichhlLGVNBxQBdeL_GmHCu0nM0oEoJkSRqiJ4-v3cLqPxjtHK-M2U0qUy5885HtY1CVroKorqK3ruydfHMbQLr6sBEM9OaS3RmTenh6tBH6OvleTl9jRcf87fpZBHnLKVtzKW1RVYwTgVXXBbABcVKWbBcYmGUyoUCyChYrGSiUipUIbjMmckKICDYCN3v726b-qcD3-qN8zmUpamg7rwmKUs4DtWjd__Qdd014eGeCpYYx2lPkT2VN7X3DVi9bdzGNDtNsO7d6t6t7t3qg9uwc3u43GUbKI4bfzIDcLMHHAAcY4VJqiRjv-X_e3M</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zhao, Xun</creator><creator>Wu, Yanhong</creator><creator>Cui, Weiwei</creator><creator>Du, Xinnan</creator><creator>Chen, Yuan</creator><creator>Wang, Yong</creator><creator>Lee, Dik Lun</creator><creator>Qu, Huamin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data</title><author>Zhao, Xun ; Wu, Yanhong ; Cui, Weiwei ; Du, Xinnan ; Chen, Yuan ; Wang, Yong ; Lee, Dik Lun ; Qu, Huamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-47ffdbd34264847de462088fef4706a88c68eeb2ef087589268d647c3abde1e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Decision making</topic><topic>Human resources</topic><topic>Industries</topic><topic>Measurement</topic><topic>multi-criteria decision making</topic><topic>multi-dimensional data</topic><topic>Multidimensional data</topic><topic>Queries</topic><topic>Skyline query</topic><topic>skyline visualization</topic><topic>Tourism</topic><topic>Urban areas</topic><topic>User requirements</topic><topic>Visual analytics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xun</creatorcontrib><creatorcontrib>Wu, Yanhong</creatorcontrib><creatorcontrib>Cui, Weiwei</creatorcontrib><creatorcontrib>Du, Xinnan</creatorcontrib><creatorcontrib>Chen, Yuan</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Lee, Dik Lun</creatorcontrib><creatorcontrib>Qu, Huamin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Xun</au><au>Wu, Yanhong</au><au>Cui, Weiwei</au><au>Du, Xinnan</au><au>Chen, Yuan</au><au>Wang, Yong</au><au>Lee, Dik Lun</au><au>Qu, Huamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-01</date><risdate>2018</risdate><volume>24</volume><issue>1</issue><spage>246</spage><epage>255</epage><pages>246-255</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Skyline queries have wide-ranging applications in fields that involve multi-criteria decision making, including tourism, retail industry, and human resources. By automatically removing incompetent candidates, skyline queries allow users to focus on a subset of superior data items (i.e., the skyline), thus reducing the decision-making overhead. However, users are still required to interpret and compare these superior items manually before making a successful choice. This task is challenging because of two issues. First, people usually have fuzzy, unstable, and inconsistent preferences when presented with multiple candidates. Second, skyline queries do not reveal the reasons for the superiority of certain skyline points in a multi-dimensional space. To address these issues, we propose SkyLens, a visual analytic system aiming at revealing the superiority of skyline points from different perspectives and at different scales to aid users in their decision making. Two scenarios demonstrate the usefulness of SkyLens on two datasets with a dozen of attributes. A qualitative study is also conducted to show that users can efficiently accomplish skyline understanding and comparison tasks with SkyLens.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28866558</pmid><doi>10.1109/TVCG.2017.2744738</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2018-01, Vol.24 (1), p.246-255 |
issn | 1077-2626 1941-0506 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TVCG_2017_2744738 |
source | IEEE Electronic Library (IEL) |
subjects | Decision making Human resources Industries Measurement multi-criteria decision making multi-dimensional data Multidimensional data Queries Skyline query skyline visualization Tourism Urban areas User requirements Visual analytics |
title | SkyLens: Visual Analysis of Skyline on Multi-Dimensional Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SkyLens:%20Visual%20Analysis%20of%20Skyline%20on%20Multi-Dimensional%20Data&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Zhao,%20Xun&rft.date=2018-01&rft.volume=24&rft.issue=1&rft.spage=246&rft.epage=255&rft.pages=246-255&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2744738&rft_dat=%3Cproquest_RIE%3E1935403546%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1974434096&rft_id=info:pmid/28866558&rft_ieee_id=8019873&rfr_iscdi=true |