InterAxis: Steering Scatterplot Axes via Observation-Level Interaction

Scatterplots are effective visualization techniques for multidimensional data that use two (or three) axes to visualize data items as a point at its corresponding x and y Cartesian coordinates. Typically, each axis is bound to a single data attribute. Interactive exploration occurs by changing the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2016-01, Vol.22 (1), p.131-140
Hauptverfasser: Hannah Kim, Jaegul Choo, Haesun Park, Endert, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 140
container_issue 1
container_start_page 131
container_title IEEE transactions on visualization and computer graphics
container_volume 22
creator Hannah Kim
Jaegul Choo
Haesun Park
Endert, Alex
description Scatterplots are effective visualization techniques for multidimensional data that use two (or three) axes to visualize data items as a point at its corresponding x and y Cartesian coordinates. Typically, each axis is bound to a single data attribute. Interactive exploration occurs by changing the data attributes bound to each of these axes. In the case of using scatterplots to visualize the outputs of dimension reduction techniques, the x and y axes are combinations of the true, high-dimensional data. For these spatializations, the axes present usability challenges in terms of interpretability and interactivity. That is, understanding the axes and interacting with them to make adjustments can be challenging. In this paper, we present InterAxis, a visual analytics technique to properly interpret, define, and change an axis in a user-driven manner. Users are given the ability to define and modify axes by dragging data items to either side of the x or y axes, from which the system computes a linear combination of data attributes and binds it to the axis. Further, users can directly tune the positive and negative contribution to these complex axes by using the visualization of data attributes that correspond to each axis. We describe the details of our technique and demonstrate the intended usage through two scenarios.
doi_str_mv 10.1109/TVCG.2015.2467615
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TVCG_2015_2467615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7192671</ieee_id><sourcerecordid>1730681033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-55d9180797d9eb36dd959f71a09d99cd3b43375c4d26bec36a1b98232d25d0b63</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoflR_gAiy4MXL1kyySTbeSvELCj20eg3ZZCor292abEv99-7a6sHTDDPPOwwPIZdAhwBU383fxk9DRkEMWSaVBHFATkFnkFJB5WHXU6VSJpk8IWcxflAKWZbrY3LCJBeKa31KHl_qFsNoW8b7ZNYihrJ-T2bOtt10VTVtMtpiTDalTaZFxLCxbdnU6QQ3WCU_Uev6yTk5Wtgq4sW-Dsjr48N8_JxOpk8v49EkdZzTNhXCa8ip0sprLLj0Xgu9UGCp9lo7z4uMcyVc5pks0HFpodA548wz4Wkh-YDc7u6uQvO5xtiaZRkdVpWtsVlHA4pTmQPlvENv_qEfzTrU3XeGgcqYznPZU7CjXGhiDLgwq1AubfgyQE0v2fSSTS_Z7CV3mev95XWxRP-X-LXaAVc7oETEv7UCzaQC_g2lRH77</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174298863</pqid></control><display><type>article</type><title>InterAxis: Steering Scatterplot Axes via Observation-Level Interaction</title><source>IEEE Electronic Library (IEL)</source><creator>Hannah Kim ; Jaegul Choo ; Haesun Park ; Endert, Alex</creator><creatorcontrib>Hannah Kim ; Jaegul Choo ; Haesun Park ; Endert, Alex</creatorcontrib><description>Scatterplots are effective visualization techniques for multidimensional data that use two (or three) axes to visualize data items as a point at its corresponding x and y Cartesian coordinates. Typically, each axis is bound to a single data attribute. Interactive exploration occurs by changing the data attributes bound to each of these axes. In the case of using scatterplots to visualize the outputs of dimension reduction techniques, the x and y axes are combinations of the true, high-dimensional data. For these spatializations, the axes present usability challenges in terms of interpretability and interactivity. That is, understanding the axes and interacting with them to make adjustments can be challenging. In this paper, we present InterAxis, a visual analytics technique to properly interpret, define, and change an axis in a user-driven manner. Users are given the ability to define and modify axes by dragging data items to either side of the x or y axes, from which the system computes a linear combination of data attributes and binds it to the axis. Further, users can directly tune the positive and negative contribution to these complex axes by using the visualization of data attributes that correspond to each axis. We describe the details of our technique and demonstrate the intended usage through two scenarios.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2015.2467615</identifier><identifier>PMID: 26357399</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Analytics ; Axes (reference lines) ; Cartesian coordinates ; Data models ; Data visualization ; model steering ; Multidimensional data ; Principal component analysis ; Scalability ; Scatterplots ; Semantics ; Steering ; user interaction ; Visual analytics ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2016-01, Vol.22 (1), p.131-140</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-55d9180797d9eb36dd959f71a09d99cd3b43375c4d26bec36a1b98232d25d0b63</citedby><cites>FETCH-LOGICAL-c330t-55d9180797d9eb36dd959f71a09d99cd3b43375c4d26bec36a1b98232d25d0b63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7192671$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7192671$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26357399$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannah Kim</creatorcontrib><creatorcontrib>Jaegul Choo</creatorcontrib><creatorcontrib>Haesun Park</creatorcontrib><creatorcontrib>Endert, Alex</creatorcontrib><title>InterAxis: Steering Scatterplot Axes via Observation-Level Interaction</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Scatterplots are effective visualization techniques for multidimensional data that use two (or three) axes to visualize data items as a point at its corresponding x and y Cartesian coordinates. Typically, each axis is bound to a single data attribute. Interactive exploration occurs by changing the data attributes bound to each of these axes. In the case of using scatterplots to visualize the outputs of dimension reduction techniques, the x and y axes are combinations of the true, high-dimensional data. For these spatializations, the axes present usability challenges in terms of interpretability and interactivity. That is, understanding the axes and interacting with them to make adjustments can be challenging. In this paper, we present InterAxis, a visual analytics technique to properly interpret, define, and change an axis in a user-driven manner. Users are given the ability to define and modify axes by dragging data items to either side of the x or y axes, from which the system computes a linear combination of data attributes and binds it to the axis. Further, users can directly tune the positive and negative contribution to these complex axes by using the visualization of data attributes that correspond to each axis. We describe the details of our technique and demonstrate the intended usage through two scenarios.</description><subject>Analytics</subject><subject>Axes (reference lines)</subject><subject>Cartesian coordinates</subject><subject>Data models</subject><subject>Data visualization</subject><subject>model steering</subject><subject>Multidimensional data</subject><subject>Principal component analysis</subject><subject>Scalability</subject><subject>Scatterplots</subject><subject>Semantics</subject><subject>Steering</subject><subject>user interaction</subject><subject>Visual analytics</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoflR_gAiy4MXL1kyySTbeSvELCj20eg3ZZCor292abEv99-7a6sHTDDPPOwwPIZdAhwBU383fxk9DRkEMWSaVBHFATkFnkFJB5WHXU6VSJpk8IWcxflAKWZbrY3LCJBeKa31KHl_qFsNoW8b7ZNYihrJ-T2bOtt10VTVtMtpiTDalTaZFxLCxbdnU6QQ3WCU_Uev6yTk5Wtgq4sW-Dsjr48N8_JxOpk8v49EkdZzTNhXCa8ip0sprLLj0Xgu9UGCp9lo7z4uMcyVc5pks0HFpodA548wz4Wkh-YDc7u6uQvO5xtiaZRkdVpWtsVlHA4pTmQPlvENv_qEfzTrU3XeGgcqYznPZU7CjXGhiDLgwq1AubfgyQE0v2fSSTS_Z7CV3mev95XWxRP-X-LXaAVc7oETEv7UCzaQC_g2lRH77</recordid><startdate>20160131</startdate><enddate>20160131</enddate><creator>Hannah Kim</creator><creator>Jaegul Choo</creator><creator>Haesun Park</creator><creator>Endert, Alex</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20160131</creationdate><title>InterAxis: Steering Scatterplot Axes via Observation-Level Interaction</title><author>Hannah Kim ; Jaegul Choo ; Haesun Park ; Endert, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-55d9180797d9eb36dd959f71a09d99cd3b43375c4d26bec36a1b98232d25d0b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analytics</topic><topic>Axes (reference lines)</topic><topic>Cartesian coordinates</topic><topic>Data models</topic><topic>Data visualization</topic><topic>model steering</topic><topic>Multidimensional data</topic><topic>Principal component analysis</topic><topic>Scalability</topic><topic>Scatterplots</topic><topic>Semantics</topic><topic>Steering</topic><topic>user interaction</topic><topic>Visual analytics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannah Kim</creatorcontrib><creatorcontrib>Jaegul Choo</creatorcontrib><creatorcontrib>Haesun Park</creatorcontrib><creatorcontrib>Endert, Alex</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hannah Kim</au><au>Jaegul Choo</au><au>Haesun Park</au><au>Endert, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>InterAxis: Steering Scatterplot Axes via Observation-Level Interaction</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2016-01-31</date><risdate>2016</risdate><volume>22</volume><issue>1</issue><spage>131</spage><epage>140</epage><pages>131-140</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Scatterplots are effective visualization techniques for multidimensional data that use two (or three) axes to visualize data items as a point at its corresponding x and y Cartesian coordinates. Typically, each axis is bound to a single data attribute. Interactive exploration occurs by changing the data attributes bound to each of these axes. In the case of using scatterplots to visualize the outputs of dimension reduction techniques, the x and y axes are combinations of the true, high-dimensional data. For these spatializations, the axes present usability challenges in terms of interpretability and interactivity. That is, understanding the axes and interacting with them to make adjustments can be challenging. In this paper, we present InterAxis, a visual analytics technique to properly interpret, define, and change an axis in a user-driven manner. Users are given the ability to define and modify axes by dragging data items to either side of the x or y axes, from which the system computes a linear combination of data attributes and binds it to the axis. Further, users can directly tune the positive and negative contribution to these complex axes by using the visualization of data attributes that correspond to each axis. We describe the details of our technique and demonstrate the intended usage through two scenarios.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>26357399</pmid><doi>10.1109/TVCG.2015.2467615</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2016-01, Vol.22 (1), p.131-140
issn 1077-2626
1941-0506
language eng
recordid cdi_crossref_primary_10_1109_TVCG_2015_2467615
source IEEE Electronic Library (IEL)
subjects Analytics
Axes (reference lines)
Cartesian coordinates
Data models
Data visualization
model steering
Multidimensional data
Principal component analysis
Scalability
Scatterplots
Semantics
Steering
user interaction
Visual analytics
Visualization
title InterAxis: Steering Scatterplot Axes via Observation-Level Interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A42%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=InterAxis:%20Steering%20Scatterplot%20Axes%20via%20Observation-Level%20Interaction&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Hannah%20Kim&rft.date=2016-01-31&rft.volume=22&rft.issue=1&rft.spage=131&rft.epage=140&rft.pages=131-140&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2015.2467615&rft_dat=%3Cproquest_RIE%3E1730681033%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174298863&rft_id=info:pmid/26357399&rft_ieee_id=7192671&rfr_iscdi=true