1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators

This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2010-01, Vol.57 (1), p.82-87
Hauptverfasser: Zuo, Chengjie, Van Der Spiegel, Jan, Piazza, Gianluca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1
container_start_page 82
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 57
creator Zuo, Chengjie
Van Der Spiegel, Jan
Piazza, Gianluca
description This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-¿m complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.
doi_str_mv 10.1109/TUFFC.1382
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TUFFC_1382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5361526</ieee_id><sourcerecordid>753641839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-62d9a5853539dc10993f2ad2837c76a7100b8601638c02a3f355a5aa95dec2933</originalsourceid><addsrcrecordid>eNqF0U1rGzEQBmBRWho36aXXQNAlFApyRl-70tGYOCnEzSHJeZG1s1RlvXKlNST59ZFjJz32JMQ8vGj0EvKNw5RzsBf3D4vFfMqlER_IhGuhmbFafyQTMEYzCRyOyJec_wBwpaz4TI4EgAIlYUJ-8ylodnX9TOfL2zsasw9978aY6MplbGkcaLlicj2jXcC-Zfjow1gmm4DPEXv0Ywqezvpf1MdhjNvE6Dq2SJeXyzuaMMdhF5dPyKfO9Rm_Hs5j8rC4vJ9fs5vbq5_z2Q3zqoaRVaK1ThsttbStL9tZ2QnXCiNrX1eu5gArUwGvpPEgnOyk1k47Z3WLXlgpj8n3fe4mxb9bzGOzDtljWWrAuM1NrWWluJH2_1LKytRK7zJ_7KVPMeeEXbNJYe3SU8Oh2VXQvFbQ7Coo-OwQu12tsX2nb39ewPkBuOxd3yU3-JD_OaEsr1VV3OneBUR8H5fnl4or-QLOWpQM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733687453</pqid></control><display><type>article</type><title>1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators</title><source>IEEE Electronic Library (IEL)</source><creator>Zuo, Chengjie ; Van Der Spiegel, Jan ; Piazza, Gianluca</creator><creatorcontrib>Zuo, Chengjie ; Van Der Spiegel, Jan ; Piazza, Gianluca</creatorcontrib><description>This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-¿m complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/TUFFC.1382</identifier><identifier>PMID: 20040430</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustic wave devices, piezoelectric and piezoresistive devices ; Acoustics - instrumentation ; Aluminum Compounds - chemistry ; Aluminum nitride ; Ambient intelligence ; Applied sciences ; Circuits ; CMOS ; CMOS process ; CMOS technology ; Computer-Aided Design ; Devices ; Electronics ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Film bulk acoustic resonators ; Frequency ; GSM ; Local oscillators ; Micro-Electrical-Mechanical Systems - instrumentation ; Micromechanical devices ; Microwaves ; Oscillators ; Oscillometry - instrumentation ; Phase noise ; Piezoelectricity ; Reproducibility of Results ; Resonators ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Sensitivity and Specificity ; Shape ; Transducers ; Vibration</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2010-01, Vol.57 (1), p.82-87</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-62d9a5853539dc10993f2ad2837c76a7100b8601638c02a3f355a5aa95dec2933</citedby><cites>FETCH-LOGICAL-c470t-62d9a5853539dc10993f2ad2837c76a7100b8601638c02a3f355a5aa95dec2933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5361526$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,315,781,785,790,791,797,4051,4052,23935,23936,25145,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5361526$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22491746$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20040430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuo, Chengjie</creatorcontrib><creatorcontrib>Van Der Spiegel, Jan</creatorcontrib><creatorcontrib>Piazza, Gianluca</creatorcontrib><title>1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-¿m complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.</description><subject>Acoustic wave devices, piezoelectric and piezoresistive devices</subject><subject>Acoustics - instrumentation</subject><subject>Aluminum Compounds - chemistry</subject><subject>Aluminum nitride</subject><subject>Ambient intelligence</subject><subject>Applied sciences</subject><subject>Circuits</subject><subject>CMOS</subject><subject>CMOS process</subject><subject>CMOS technology</subject><subject>Computer-Aided Design</subject><subject>Devices</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Film bulk acoustic resonators</subject><subject>Frequency</subject><subject>GSM</subject><subject>Local oscillators</subject><subject>Micro-Electrical-Mechanical Systems - instrumentation</subject><subject>Micromechanical devices</subject><subject>Microwaves</subject><subject>Oscillators</subject><subject>Oscillometry - instrumentation</subject><subject>Phase noise</subject><subject>Piezoelectricity</subject><subject>Reproducibility of Results</subject><subject>Resonators</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Sensitivity and Specificity</subject><subject>Shape</subject><subject>Transducers</subject><subject>Vibration</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0U1rGzEQBmBRWho36aXXQNAlFApyRl-70tGYOCnEzSHJeZG1s1RlvXKlNST59ZFjJz32JMQ8vGj0EvKNw5RzsBf3D4vFfMqlER_IhGuhmbFafyQTMEYzCRyOyJec_wBwpaz4TI4EgAIlYUJ-8ylodnX9TOfL2zsasw9978aY6MplbGkcaLlicj2jXcC-Zfjow1gmm4DPEXv0Ywqezvpf1MdhjNvE6Dq2SJeXyzuaMMdhF5dPyKfO9Rm_Hs5j8rC4vJ9fs5vbq5_z2Q3zqoaRVaK1ThsttbStL9tZ2QnXCiNrX1eu5gArUwGvpPEgnOyk1k47Z3WLXlgpj8n3fe4mxb9bzGOzDtljWWrAuM1NrWWluJH2_1LKytRK7zJ_7KVPMeeEXbNJYe3SU8Oh2VXQvFbQ7Coo-OwQu12tsX2nb39ewPkBuOxd3yU3-JD_OaEsr1VV3OneBUR8H5fnl4or-QLOWpQM</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Zuo, Chengjie</creator><creator>Van Der Spiegel, Jan</creator><creator>Piazza, Gianluca</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QF</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201001</creationdate><title>1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators</title><author>Zuo, Chengjie ; Van Der Spiegel, Jan ; Piazza, Gianluca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-62d9a5853539dc10993f2ad2837c76a7100b8601638c02a3f355a5aa95dec2933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustic wave devices, piezoelectric and piezoresistive devices</topic><topic>Acoustics - instrumentation</topic><topic>Aluminum Compounds - chemistry</topic><topic>Aluminum nitride</topic><topic>Ambient intelligence</topic><topic>Applied sciences</topic><topic>Circuits</topic><topic>CMOS</topic><topic>CMOS process</topic><topic>CMOS technology</topic><topic>Computer-Aided Design</topic><topic>Devices</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Film bulk acoustic resonators</topic><topic>Frequency</topic><topic>GSM</topic><topic>Local oscillators</topic><topic>Micro-Electrical-Mechanical Systems - instrumentation</topic><topic>Micromechanical devices</topic><topic>Microwaves</topic><topic>Oscillators</topic><topic>Oscillometry - instrumentation</topic><topic>Phase noise</topic><topic>Piezoelectricity</topic><topic>Reproducibility of Results</topic><topic>Resonators</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Sensitivity and Specificity</topic><topic>Shape</topic><topic>Transducers</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Chengjie</creatorcontrib><creatorcontrib>Van Der Spiegel, Jan</creatorcontrib><creatorcontrib>Piazza, Gianluca</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zuo, Chengjie</au><au>Van Der Spiegel, Jan</au><au>Piazza, Gianluca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>2010-01</date><risdate>2010</risdate><volume>57</volume><issue>1</issue><spage>82</spage><epage>87</epage><pages>82-87</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper reports on the first demonstration of a 1.05-GHz microelectromechanical (MEMS) oscillator based on lateral-field-excited (LFE) piezoelectric AlN contourmode resonators. The oscillator shows a phase noise level of -81 dBc/Hz at 1-kHz offset frequency and a phase noise floor of -146 dBc/Hz, which satisfies the global system for mobile communications (GSM) requirements for ultra-high frequency (UHF) local oscillators (LO). The circuit was fabricated in the AMI semiconductor (AMIS) 0.5-¿m complementary metaloxide- semiconductor (CMOS) process, with the oscillator core consuming only 3.5 mW DC power. The device overall performance has the best figure-of-merit (FoM) when compared with other gigahertz oscillators that are based on film bulk acoustic resonator (FBAR), surface acoustic wave (SAW), and CMOS on-chip inductor and capacitor (CMOS LC) technologies. A simple 2-mask process was used to fabricate the LFE AlN resonators operating between 843 MHz and 1.64 GHz with simultaneously high Q (up to 2,200) and kt 2 (up to 1.2%). This process further relaxes manufacturing tolerances and improves yield. All these advantages make these devices suitable for post-CMOS integrated on-chip direct gigahertz frequency synthesis in reconfigurable multiband wireless communications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>20040430</pmid><doi>10.1109/TUFFC.1382</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2010-01, Vol.57 (1), p.82-87
issn 0885-3010
1525-8955
language eng
recordid cdi_crossref_primary_10_1109_TUFFC_1382
source IEEE Electronic Library (IEL)
subjects Acoustic wave devices, piezoelectric and piezoresistive devices
Acoustics - instrumentation
Aluminum Compounds - chemistry
Aluminum nitride
Ambient intelligence
Applied sciences
Circuits
CMOS
CMOS process
CMOS technology
Computer-Aided Design
Devices
Electronics
Equipment Design
Equipment Failure Analysis
Exact sciences and technology
Film bulk acoustic resonators
Frequency
GSM
Local oscillators
Micro-Electrical-Mechanical Systems - instrumentation
Micromechanical devices
Microwaves
Oscillators
Oscillometry - instrumentation
Phase noise
Piezoelectricity
Reproducibility of Results
Resonators
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Sensitivity and Specificity
Shape
Transducers
Vibration
title 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=1.05-GHz%20CMOS%20oscillator%20based%20on%20lateral-%20field-excited%20piezoelectric%20AlN%20contour-%20mode%20MEMS%20resonators&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Zuo,%20Chengjie&rft.date=2010-01&rft.volume=57&rft.issue=1&rft.spage=82&rft.epage=87&rft.pages=82-87&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/TUFFC.1382&rft_dat=%3Cproquest_RIE%3E753641839%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733687453&rft_id=info:pmid/20040430&rft_ieee_id=5361526&rfr_iscdi=true