Broadband 400-GHz InGaAs mHEMT Transmitter and Receiver S-MMICs
The modeling, design, and experimental evaluation of both a 400-GHz transmitter and receiver submillimeter-wave monolithic integrated circuit (S-MMIC) is presented in this article. These S-MMICs are intended for a radar-based system in the aforementioned operating frequency. The transmitter occupies...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on terahertz science and technology 2021-11, Vol.11 (6), p.660-675 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 675 |
---|---|
container_issue | 6 |
container_start_page | 660 |
container_title | IEEE transactions on terahertz science and technology |
container_volume | 11 |
creator | Gashi, Bersant John, Laurenz Meier, Dominik Rosch, Markus Wagner, Sandrine Tessmann, Axel Leuther, Arnulf Ambacher, Oliver Quay, Rudiger |
description | The modeling, design, and experimental evaluation of both a 400-GHz transmitter and receiver submillimeter-wave monolithic integrated circuit (S-MMIC) is presented in this article. These S-MMICs are intended for a radar-based system in the aforementioned operating frequency. The transmitter occupies a total chip area of 750\times 2750\,{\mu {\rm m}^2}. It consists of a multiplier-by-four, generating the fourth-harmonic of the WR-10 input signal, which drives the integrated WR-2.2 power amplifier. The latter has an output-gate width of 128 \mum. The receiver S-MMIC, 750\times 2750\,{\mu {\rm m}^2}, consists of a multiplier-by-two, providing the second harmonic of the WR-10 input signal for the local-oscillator port of the subsequent integrated subharmonic mixer. The radio-frequency port of the latter, connects via a Lange coupler to a WR-2.2 low-noise amplifier (LNA). All the components included, are processed on a 35-nm {\text{InAlAs}}/{\text{InGaAs}} metamorphic high-electron-mobility transistor integrated-circuit technology, utilizing two-finger transistors and thin-film microstrip lines (TFMSLs). The modeling approach of the amplifier cores and the respective design decisions taken are listed and elaborated-on in this work. Accompanying measurements and simulations of the transmitter and receiver are presented. The individual components of the aforementioned S-MMICs, are characterized and the results are included in this article. The state-of-the-art, for S-MMIC based circuits operating in the WR-2.2 band, is set by the LNA, on one side, spanning an operational 3-dB bandwidth (BW) of 310 to 475 GHz, with a peak gain of 23 dB and, on the other side, by the final transmitter design, which covers an operating range of 335 to 425 GHz with a peak-output power of 9.0 dBm and accompanying transducer gain of 11 dB. The included transmitter- and receiver-designs represent a first-time implementation in the mentioned technological process, utilizing solely TFMSLs, boasting the integration level, operating in the WR-2.2 frequency band, and setting the state of the art-to the authors' best knowledge-for all S-MMIC based solutions in the respective frequency band, in terms of output powe |
doi_str_mv | 10.1109/TTHZ.2021.3099064 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TTHZ_2021_3099064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9495213</ieee_id><sourcerecordid>2592620045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-b36bc1086eee042c182bbf66f347b11287328c66269cd0bbbce3309bb2e4243b3</originalsourceid><addsrcrecordid>eNqNkEFLwzAYQIMoOHQ_QLwUPEpn8iVNm5PMMtfBhqAVxEtoshQyXDuTTtFfb0rHzuaSBN7LRx5CVwRPCMHiriyL9wlgIBOKhcCcnaARkITHlDF-ejzD2zkae7_BYSWcZikbofsH11ZrVTXriGEcz4vfaNHMq6mPtsVsVUalqxq_tV1nXNRDz0Yb-xUuL_Fqtcj9JTqrqw9vxof9Ar0-zsq8iJdP80U-XcaaUt7FinKlCc64MQYz0CQDpWrOa8pSRQhkKYVMcw5c6DVWSmlDw1-UAsOAUUUv0M3w7s61n3vjO7lp964JIyUkAjhgzJJAkYHSrvXemVrunN1W7kcSLPtUsk8l-1TykCo42eB8G9XWXlvTaHP0QqqUsF7oq4ncdlVn2yZv900X1Nv_q4G-HmgbIhwpwUQChNI_XwGBwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592620045</pqid></control><display><type>article</type><title>Broadband 400-GHz InGaAs mHEMT Transmitter and Receiver S-MMICs</title><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>IEEE Electronic Library (IEL)</source><creator>Gashi, Bersant ; John, Laurenz ; Meier, Dominik ; Rosch, Markus ; Wagner, Sandrine ; Tessmann, Axel ; Leuther, Arnulf ; Ambacher, Oliver ; Quay, Rudiger</creator><creatorcontrib>Gashi, Bersant ; John, Laurenz ; Meier, Dominik ; Rosch, Markus ; Wagner, Sandrine ; Tessmann, Axel ; Leuther, Arnulf ; Ambacher, Oliver ; Quay, Rudiger</creatorcontrib><description><![CDATA[The modeling, design, and experimental evaluation of both a 400-GHz transmitter and receiver submillimeter-wave monolithic integrated circuit (S-MMIC) is presented in this article. These S-MMICs are intended for a radar-based system in the aforementioned operating frequency. The transmitter occupies a total chip area of <inline-formula><tex-math notation="LaTeX">750\times 2750\,{\mu {\rm m}^2}</tex-math></inline-formula>. It consists of a multiplier-by-four, generating the fourth-harmonic of the WR-10 input signal, which drives the integrated WR-2.2 power amplifier. The latter has an output-gate width of 128 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m. The receiver S-MMIC, <inline-formula><tex-math notation="LaTeX">750\times 2750\,{\mu {\rm m}^2}</tex-math></inline-formula>, consists of a multiplier-by-two, providing the second harmonic of the WR-10 input signal for the local-oscillator port of the subsequent integrated subharmonic mixer. The radio-frequency port of the latter, connects via a Lange coupler to a WR-2.2 low-noise amplifier (LNA). All the components included, are processed on a 35-nm <inline-formula><tex-math notation="LaTeX">{\text{InAlAs}}/{\text{InGaAs}}</tex-math></inline-formula> metamorphic high-electron-mobility transistor integrated-circuit technology, utilizing two-finger transistors and thin-film microstrip lines (TFMSLs). The modeling approach of the amplifier cores and the respective design decisions taken are listed and elaborated-on in this work. Accompanying measurements and simulations of the transmitter and receiver are presented. The individual components of the aforementioned S-MMICs, are characterized and the results are included in this article. The state-of-the-art, for S-MMIC based circuits operating in the WR-2.2 band, is set by the LNA, on one side, spanning an operational 3-dB bandwidth (BW) of 310 to 475 GHz, with a peak gain of 23 dB and, on the other side, by the final transmitter design, which covers an operating range of 335 to 425 GHz with a peak-output power of 9.0 dBm and accompanying transducer gain of 11 dB. The included transmitter- and receiver-designs represent a first-time implementation in the mentioned technological process, utilizing solely TFMSLs, boasting the integration level, operating in the WR-2.2 frequency band, and setting the state of the art-to the authors' best knowledge-for all S-MMIC based solutions in the respective frequency band, in terms of output power and gain over the operating 3-dB BW.]]></description><identifier>ISSN: 2156-342X</identifier><identifier>EISSN: 2156-3446</identifier><identifier>DOI: 10.1109/TTHZ.2021.3099064</identifier><identifier>CODEN: ITTSBX</identifier><language>eng</language><publisher>PISCATAWAY: IEEE</publisher><subject>Broadband ; Engineering ; Engineering, Electrical & Electronic ; Frequencies ; Indium gallium arsenides ; InGaAs ; Integrated circuits ; Logic gates ; low-noise amplifier (LNA) ; metamorphic HEMT ; mHEMTs ; Microstrip transmission lines ; MMIC (circuits) ; Modelling ; multiplier-by-four ; Optics ; Physical Sciences ; Physics ; Physics, Applied ; power amplifier (PA) ; Power amplifiers ; Radio frequency ; Radio transmitters ; receiver ; Receivers ; Science & Technology ; Semiconductor devices ; Solid modeling ; subharmonic mixer ; Submillimeter waves ; Technology ; Transistors ; transmitter ; Transmitters</subject><ispartof>IEEE transactions on terahertz science and technology, 2021-11, Vol.11 (6), p.660-675</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000714202100009</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c336t-b36bc1086eee042c182bbf66f347b11287328c66269cd0bbbce3309bb2e4243b3</citedby><cites>FETCH-LOGICAL-c336t-b36bc1086eee042c182bbf66f347b11287328c66269cd0bbbce3309bb2e4243b3</cites><orcidid>0000-0003-1978-6771 ; 0000-0002-4369-591X ; 0000-0002-0046-4417 ; 0000-0002-9600-3040 ; 0000-0002-0774-2520 ; 0000-0002-3003-0134 ; 0000-0003-3159-8343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9495213$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,797,27929,27930,39263,54763</link.rule.ids></links><search><creatorcontrib>Gashi, Bersant</creatorcontrib><creatorcontrib>John, Laurenz</creatorcontrib><creatorcontrib>Meier, Dominik</creatorcontrib><creatorcontrib>Rosch, Markus</creatorcontrib><creatorcontrib>Wagner, Sandrine</creatorcontrib><creatorcontrib>Tessmann, Axel</creatorcontrib><creatorcontrib>Leuther, Arnulf</creatorcontrib><creatorcontrib>Ambacher, Oliver</creatorcontrib><creatorcontrib>Quay, Rudiger</creatorcontrib><title>Broadband 400-GHz InGaAs mHEMT Transmitter and Receiver S-MMICs</title><title>IEEE transactions on terahertz science and technology</title><addtitle>TTHZ</addtitle><addtitle>IEEE T THZ SCI TECHN</addtitle><description><![CDATA[The modeling, design, and experimental evaluation of both a 400-GHz transmitter and receiver submillimeter-wave monolithic integrated circuit (S-MMIC) is presented in this article. These S-MMICs are intended for a radar-based system in the aforementioned operating frequency. The transmitter occupies a total chip area of <inline-formula><tex-math notation="LaTeX">750\times 2750\,{\mu {\rm m}^2}</tex-math></inline-formula>. It consists of a multiplier-by-four, generating the fourth-harmonic of the WR-10 input signal, which drives the integrated WR-2.2 power amplifier. The latter has an output-gate width of 128 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m. The receiver S-MMIC, <inline-formula><tex-math notation="LaTeX">750\times 2750\,{\mu {\rm m}^2}</tex-math></inline-formula>, consists of a multiplier-by-two, providing the second harmonic of the WR-10 input signal for the local-oscillator port of the subsequent integrated subharmonic mixer. The radio-frequency port of the latter, connects via a Lange coupler to a WR-2.2 low-noise amplifier (LNA). All the components included, are processed on a 35-nm <inline-formula><tex-math notation="LaTeX">{\text{InAlAs}}/{\text{InGaAs}}</tex-math></inline-formula> metamorphic high-electron-mobility transistor integrated-circuit technology, utilizing two-finger transistors and thin-film microstrip lines (TFMSLs). The modeling approach of the amplifier cores and the respective design decisions taken are listed and elaborated-on in this work. Accompanying measurements and simulations of the transmitter and receiver are presented. The individual components of the aforementioned S-MMICs, are characterized and the results are included in this article. The state-of-the-art, for S-MMIC based circuits operating in the WR-2.2 band, is set by the LNA, on one side, spanning an operational 3-dB bandwidth (BW) of 310 to 475 GHz, with a peak gain of 23 dB and, on the other side, by the final transmitter design, which covers an operating range of 335 to 425 GHz with a peak-output power of 9.0 dBm and accompanying transducer gain of 11 dB. The included transmitter- and receiver-designs represent a first-time implementation in the mentioned technological process, utilizing solely TFMSLs, boasting the integration level, operating in the WR-2.2 frequency band, and setting the state of the art-to the authors' best knowledge-for all S-MMIC based solutions in the respective frequency band, in terms of output power and gain over the operating 3-dB BW.]]></description><subject>Broadband</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Frequencies</subject><subject>Indium gallium arsenides</subject><subject>InGaAs</subject><subject>Integrated circuits</subject><subject>Logic gates</subject><subject>low-noise amplifier (LNA)</subject><subject>metamorphic HEMT</subject><subject>mHEMTs</subject><subject>Microstrip transmission lines</subject><subject>MMIC (circuits)</subject><subject>Modelling</subject><subject>multiplier-by-four</subject><subject>Optics</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>power amplifier (PA)</subject><subject>Power amplifiers</subject><subject>Radio frequency</subject><subject>Radio transmitters</subject><subject>receiver</subject><subject>Receivers</subject><subject>Science & Technology</subject><subject>Semiconductor devices</subject><subject>Solid modeling</subject><subject>subharmonic mixer</subject><subject>Submillimeter waves</subject><subject>Technology</subject><subject>Transistors</subject><subject>transmitter</subject><subject>Transmitters</subject><issn>2156-342X</issn><issn>2156-3446</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>HGBXW</sourceid><recordid>eNqNkEFLwzAYQIMoOHQ_QLwUPEpn8iVNm5PMMtfBhqAVxEtoshQyXDuTTtFfb0rHzuaSBN7LRx5CVwRPCMHiriyL9wlgIBOKhcCcnaARkITHlDF-ejzD2zkae7_BYSWcZikbofsH11ZrVTXriGEcz4vfaNHMq6mPtsVsVUalqxq_tV1nXNRDz0Yb-xUuL_Fqtcj9JTqrqw9vxof9Ar0-zsq8iJdP80U-XcaaUt7FinKlCc64MQYz0CQDpWrOa8pSRQhkKYVMcw5c6DVWSmlDw1-UAsOAUUUv0M3w7s61n3vjO7lp964JIyUkAjhgzJJAkYHSrvXemVrunN1W7kcSLPtUsk8l-1TykCo42eB8G9XWXlvTaHP0QqqUsF7oq4ncdlVn2yZv900X1Nv_q4G-HmgbIhwpwUQChNI_XwGBwg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Gashi, Bersant</creator><creator>John, Laurenz</creator><creator>Meier, Dominik</creator><creator>Rosch, Markus</creator><creator>Wagner, Sandrine</creator><creator>Tessmann, Axel</creator><creator>Leuther, Arnulf</creator><creator>Ambacher, Oliver</creator><creator>Quay, Rudiger</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1978-6771</orcidid><orcidid>https://orcid.org/0000-0002-4369-591X</orcidid><orcidid>https://orcid.org/0000-0002-0046-4417</orcidid><orcidid>https://orcid.org/0000-0002-9600-3040</orcidid><orcidid>https://orcid.org/0000-0002-0774-2520</orcidid><orcidid>https://orcid.org/0000-0002-3003-0134</orcidid><orcidid>https://orcid.org/0000-0003-3159-8343</orcidid></search><sort><creationdate>20211101</creationdate><title>Broadband 400-GHz InGaAs mHEMT Transmitter and Receiver S-MMICs</title><author>Gashi, Bersant ; John, Laurenz ; Meier, Dominik ; Rosch, Markus ; Wagner, Sandrine ; Tessmann, Axel ; Leuther, Arnulf ; Ambacher, Oliver ; Quay, Rudiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-b36bc1086eee042c182bbf66f347b11287328c66269cd0bbbce3309bb2e4243b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Broadband</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Frequencies</topic><topic>Indium gallium arsenides</topic><topic>InGaAs</topic><topic>Integrated circuits</topic><topic>Logic gates</topic><topic>low-noise amplifier (LNA)</topic><topic>metamorphic HEMT</topic><topic>mHEMTs</topic><topic>Microstrip transmission lines</topic><topic>MMIC (circuits)</topic><topic>Modelling</topic><topic>multiplier-by-four</topic><topic>Optics</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>power amplifier (PA)</topic><topic>Power amplifiers</topic><topic>Radio frequency</topic><topic>Radio transmitters</topic><topic>receiver</topic><topic>Receivers</topic><topic>Science & Technology</topic><topic>Semiconductor devices</topic><topic>Solid modeling</topic><topic>subharmonic mixer</topic><topic>Submillimeter waves</topic><topic>Technology</topic><topic>Transistors</topic><topic>transmitter</topic><topic>Transmitters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gashi, Bersant</creatorcontrib><creatorcontrib>John, Laurenz</creatorcontrib><creatorcontrib>Meier, Dominik</creatorcontrib><creatorcontrib>Rosch, Markus</creatorcontrib><creatorcontrib>Wagner, Sandrine</creatorcontrib><creatorcontrib>Tessmann, Axel</creatorcontrib><creatorcontrib>Leuther, Arnulf</creatorcontrib><creatorcontrib>Ambacher, Oliver</creatorcontrib><creatorcontrib>Quay, Rudiger</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on terahertz science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gashi, Bersant</au><au>John, Laurenz</au><au>Meier, Dominik</au><au>Rosch, Markus</au><au>Wagner, Sandrine</au><au>Tessmann, Axel</au><au>Leuther, Arnulf</au><au>Ambacher, Oliver</au><au>Quay, Rudiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband 400-GHz InGaAs mHEMT Transmitter and Receiver S-MMICs</atitle><jtitle>IEEE transactions on terahertz science and technology</jtitle><stitle>TTHZ</stitle><stitle>IEEE T THZ SCI TECHN</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>660</spage><epage>675</epage><pages>660-675</pages><issn>2156-342X</issn><eissn>2156-3446</eissn><coden>ITTSBX</coden><abstract><![CDATA[The modeling, design, and experimental evaluation of both a 400-GHz transmitter and receiver submillimeter-wave monolithic integrated circuit (S-MMIC) is presented in this article. These S-MMICs are intended for a radar-based system in the aforementioned operating frequency. The transmitter occupies a total chip area of <inline-formula><tex-math notation="LaTeX">750\times 2750\,{\mu {\rm m}^2}</tex-math></inline-formula>. It consists of a multiplier-by-four, generating the fourth-harmonic of the WR-10 input signal, which drives the integrated WR-2.2 power amplifier. The latter has an output-gate width of 128 <inline-formula><tex-math notation="LaTeX">\mu</tex-math></inline-formula>m. The receiver S-MMIC, <inline-formula><tex-math notation="LaTeX">750\times 2750\,{\mu {\rm m}^2}</tex-math></inline-formula>, consists of a multiplier-by-two, providing the second harmonic of the WR-10 input signal for the local-oscillator port of the subsequent integrated subharmonic mixer. The radio-frequency port of the latter, connects via a Lange coupler to a WR-2.2 low-noise amplifier (LNA). All the components included, are processed on a 35-nm <inline-formula><tex-math notation="LaTeX">{\text{InAlAs}}/{\text{InGaAs}}</tex-math></inline-formula> metamorphic high-electron-mobility transistor integrated-circuit technology, utilizing two-finger transistors and thin-film microstrip lines (TFMSLs). The modeling approach of the amplifier cores and the respective design decisions taken are listed and elaborated-on in this work. Accompanying measurements and simulations of the transmitter and receiver are presented. The individual components of the aforementioned S-MMICs, are characterized and the results are included in this article. The state-of-the-art, for S-MMIC based circuits operating in the WR-2.2 band, is set by the LNA, on one side, spanning an operational 3-dB bandwidth (BW) of 310 to 475 GHz, with a peak gain of 23 dB and, on the other side, by the final transmitter design, which covers an operating range of 335 to 425 GHz with a peak-output power of 9.0 dBm and accompanying transducer gain of 11 dB. The included transmitter- and receiver-designs represent a first-time implementation in the mentioned technological process, utilizing solely TFMSLs, boasting the integration level, operating in the WR-2.2 frequency band, and setting the state of the art-to the authors' best knowledge-for all S-MMIC based solutions in the respective frequency band, in terms of output power and gain over the operating 3-dB BW.]]></abstract><cop>PISCATAWAY</cop><pub>IEEE</pub><doi>10.1109/TTHZ.2021.3099064</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1978-6771</orcidid><orcidid>https://orcid.org/0000-0002-4369-591X</orcidid><orcidid>https://orcid.org/0000-0002-0046-4417</orcidid><orcidid>https://orcid.org/0000-0002-9600-3040</orcidid><orcidid>https://orcid.org/0000-0002-0774-2520</orcidid><orcidid>https://orcid.org/0000-0002-3003-0134</orcidid><orcidid>https://orcid.org/0000-0003-3159-8343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2156-342X |
ispartof | IEEE transactions on terahertz science and technology, 2021-11, Vol.11 (6), p.660-675 |
issn | 2156-342X 2156-3446 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TTHZ_2021_3099064 |
source | Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; IEEE Electronic Library (IEL) |
subjects | Broadband Engineering Engineering, Electrical & Electronic Frequencies Indium gallium arsenides InGaAs Integrated circuits Logic gates low-noise amplifier (LNA) metamorphic HEMT mHEMTs Microstrip transmission lines MMIC (circuits) Modelling multiplier-by-four Optics Physical Sciences Physics Physics, Applied power amplifier (PA) Power amplifiers Radio frequency Radio transmitters receiver Receivers Science & Technology Semiconductor devices Solid modeling subharmonic mixer Submillimeter waves Technology Transistors transmitter Transmitters |
title | Broadband 400-GHz InGaAs mHEMT Transmitter and Receiver S-MMICs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T03%3A44%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20400-GHz%20InGaAs%20mHEMT%20Transmitter%20and%20Receiver%20S-MMICs&rft.jtitle=IEEE%20transactions%20on%20terahertz%20science%20and%20technology&rft.au=Gashi,%20Bersant&rft.date=2021-11-01&rft.volume=11&rft.issue=6&rft.spage=660&rft.epage=675&rft.pages=660-675&rft.issn=2156-342X&rft.eissn=2156-3446&rft.coden=ITTSBX&rft_id=info:doi/10.1109/TTHZ.2021.3099064&rft_dat=%3Cproquest_cross%3E2592620045%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592620045&rft_id=info:pmid/&rft_ieee_id=9495213&rfr_iscdi=true |